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ABSTRACT
Content-Centric Networking (CCN) is a network architecture for
transferring named content from producers to consumers upon re-
quest. The name-to-content binding is cryptographically enforced
with a digital signature generated by the producer. Thus, content
integrity and origin authenticity are core features of CCN. In con-
trast, content confidentiality and privacy are left to the applica-
tions. The typically advocated approach for protecting sensitive
content is to use encryption, i.e., restrict access to those who have
appropriate decryption key(s). Moreover, content is typically en-
crypted once for identical requests, meaning that many consumers
obtain the same encrypted content. From a privacy perspective,
this is a step backwards from the “secure channel” approach in to-
day’s IP-based Internet, e.g., TLS or IPSec.

In this paper, we assess the privacy pitfalls of this approach, par-
ticularly, when the adversary learns some auxiliary information
about popularity of certain plaintext content. Merely by observ-
ing (or learning) the frequency of requested content, the adver-
sary can learn which encrypted corresponds to which plaintext
data. We evaluate this attack using a custom CCN simulator and
show that even moderately accurate popularity information suf-
fices for accurate mapping. We also show how the adversary can
exploit caches to learn content popularity information. The adver-
sary needs to know the content namespace in order to succeed.
Our results show that encryption-based access control is insuffi-
cient for privacy in CCN. More extensive counter-measures (such
as namespace restrictions and content replication) are needed to
mitigate the attack.
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1 INTRODUCTION
Information-Centric Networking (ICN) is a new networking para-
digm that treats content (aka data or information) as a first-class
object. Content-Centric Networking (CCN) is a specific type of
request-based ICN where a consumer fetches content by issuing
an explicit request (called an interest) that refers to the desired con-
tent by name. The network is responsible for routing an interests
towards either a producer of that content or a router that has pre-
viously cached it. At every router hop, per-interest state is left be-
hind to allow the content to be sent back, along the same path, thus
obviating the need for a “source address” in an interest. Moreover,
every router along the way is free to opportunistically cache con-
tent in order to satisfy future interests. Subsequent interests that
ask for the same content (by the same name) may result in content
being served from some intervening router’s cache.

From a privacy perspective, CCN suffers from several important
issues. One of its key features is that each content must be signed
by its producer. In contrast, as a network-layer architecture, CCN
does not mandate encryption: content is transferred in cleartext,
unless previously encrypted above the network layer. Thus, it is
trivial to eavesdrop on names carried in interests and correspond-
ing content payload. If content payload is encrypted, then only the
content name is leaked. Ghali et al. [11] recently showed that, in
order to minimize this additional leakage, the name contained in
an interest must be the output of a keyed deterministic pseudo-
random function (PRF) Fk (·). This way, two consumers who re-
quest the same content with actual name N must request Fk (N )
where k is somehow known to these (presumably authorized) con-
sumers. Eavesdroppers then only learn that two consumers request
the same content, and not its actual name.

Ghali et al. also argue in [11] that the above is insufficient from
a privacy perspective. In particular, if the adversary has additional
auxiliary information about the requested content e.g., its popu-
larity within a given namespace, it can recover the content name
even if PRF-transformed names are used. The reason is due to in-
terest linkability, i.e., ability to determine when two interests refer
to the same content. We consider it a privacy leakage when the
adversary can learn information about underlying interests based
on their PRF-transformed names.

This type of leakage is not unique to CCN. If we consider CCN
as a generic key-value store where PRF-transformed interests are
keys, and corresponding content packets are values, the problem
at hand is analogous to privacy leakage in encrypted databases.
This topic has been extensively studied in recent years [27]. In
this paper, we apply to CCN attacks from the research literature
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on privacy of encrypted databases. Specifically, we study adversar-
ial ability to learn plaintexts of requests and responses using only
information learned from eavesdropping on encrypted traffic. In
doing so, we try to answer the following questions:

• How does the accuracy of adversary’s auxiliary informa-
tion influence effectiveness of privacy attacks?

• How does router caching affect attacks, and how does it
relate to topological distribution of the adversary?

• Can replicating or partitioning content amongmultiple pro-
ducers decrease effectiveness of these attacks, and if so, to
what degree?

This paper makes the following contributions:
• In Section 7, we show that, given accurate auxiliary in-

formation about content popularity distribution and suf-
ficiently many request samples, the adversary can, with
very high probability, correctly map some encrypted con-
tent packets to their plaintext counterparts.

• In Section 8, we show that privacy attacks are hindered
by router caching and content replication since they effec-
tively reduce the sample size for an adversary.

• In Section 9, we show that knowledge of a namespace is
sufficient for the adversary to learn the perceived popular-
ity of content published under that namespace. This has
strong implications on how much of a namespace should
be public or otherwise discoverable by anyone, especially,
when content names correspond to private data.

The rest of the paper is organized as follows. Section 2 overviews
CCN. Sections 3 and 4 present our notation and threat model. Next,
Section 5 describes the privacy attack and Section 6 discusses the
simulator used to study it in various network configurations. Sec-
tions 7 and 8 consider the attack in the presence of global and phys-
ically distributed eavesdropping adversaries, respectively. Section
9 demonstrates the algorithm used to infer content popularity. At-
tack implications are discussed Section 10 and related work – in
Section 11. The paper concludes with a summary of future work in
Section 12.

2 PRELIMINARIES
Content Centric Networking (CCN) is a prominent ICN architec-
ture, originally developed at PARC.NamedDataNetworking (NDN)
[36] is its academic dual. CCN and NDN have minor protocol and
packet format differences. In this paper, we focus primarily on the
former. This section overviews CCNwith respect to the latest spec-
ifications [24] and the CCN reference implementation. Given famil-
iarity with either CCN or NDN, it can be skipped without loss of
continuity.

In contrast to IP, which focuses on end-points of communication
and their names and addresses, CCN [13, 24] focuses on content
by making it named, addressable, and routable. A content name
is a URI-like [3] string composed of one or more variable-length
segments. To obtain content, a user (consumer) issues a request,
called an interest message, with the name of the desired content.
An interest can be satisfied by either: (1) a router storing requested
content in its cache, or (2) the content producer. In either case, a
content object message is returned to the consumer. (If a producer
can not satisfy an interest, it generates an Interest Return or NACK

[7].) Name matching in CCN is exact, e.g., an interest for /acm/
icn/2017/cfp.pdf can only be satisfied by a content object
named /acm/icn/2017/cfp.pdf.1

Aside from the name, interest messages may include the follow-
ing optional fields:

• Payload – a field that lets consumers push data to pro-
ducers along with the interest.

• KeyIdRestriction – hash of the public key used to
verify desired content’s signature. If present, CCN guaran-
tees that only content objects that can be verified with the
specified key are returned in response to an interest.

• ContentObjectHashRestriction – hash of the con-
tent being requested. If present, CCN guarantees delivery
of content the hash of whichmatches the value of this field.

Content objects always carry a payload (i.e., the actual content)
and some additional metadata. Unlike interests, they also usually
carry an authenticator, i.e., a signature or a Message Authentica-
tion Code (MAC). An authenticator is used to assert correctness
of name-to-content binding, and it allows consumers and routers
to verify authenticity and integrity of returned content. Content
objects do not need to carry a name if the corresponding interest
included a ContentObjectHashRestriction field. This is
because the content can be matched to the interest by computing
and checking that its hash equals the corresponding field in the
interest. (This check is used to authenticate the response.)

There are three types of entities in CCN:2 (1) consumer, which
issues interests for content, (2) producer, which generates and pub-
lishes content, and (3) routers, which forward interest and con-
tent messages between consumers and producers. Each CCN en-
tity maintains two components:

• Forwarding Interest Base (FIB) – table of name prefixes and
corresponding outgoing interfaces. The FIB is used to route
interests based on longest-prefix-matching of their names.

• Pending Interest Table (PIT) – table of outstanding (pend-
ing) interests and, for each, a set of corresponding incom-
ing interfaces.

An entity may also maintain an optional Content Store (CS) used
for caching content. From here on, we use the terms CS and cache
interchangeably.

A router use its FIB to forward interests towards producers and
its PIT – to forward content messages along the reverse path to
consumers. More specifically, upon receiving an interest, a router
R first checks its cache to see if it can satisfy this interest locally
from the cache. When R receives an interest for content named N
that is not cached locally and there are no pending interests for
the same name in its PIT, R forwards the interest to the next hop
according to its FIB. For each forwarded interest, R stores some
state information in the PIT, including the name in the interest
and the interface on which it arrived, such that content may be
sent back to the consumer. If an interest for N arrives while there
is already an entry for the same content name in the PIT, R only
needs to update the arriving interface.When content is returned, R
forwards it to all of the corresponding incoming interfaces and the

1In contrast, name matching NDN is longest-prefix-based.
2A physical entity, or host, can be both a consumer and producer of content.
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PIT entry is removed. If a router receives a content object without
a matching PIT entry, the message is silently discarded.

3 NOTATION
Let D(U) be a probability distribution over some universe of ele-
ments U. When it can be inferred from context, we omit U from
D(U). Let X denote a random variable for a distribution over U.
When X is discrete, fX (x) is the corresponding probability mass
function (PMF). For simplicity, we also use D(x) to denote fX (x).
Given any two distributions D1 and D2 over the same finite do-
main U, their statistical distance is computed as:

∆(D1,D2)
∆
=

x ∈U
|D1(x) −D2(x)| =

1

2

∑

x ∈U
|D1(x) −D2(x)|

(This is equivalent to the well-known Kolmogorov-Smirnov statis-
tic.) Frequency distributionFU(n,x) represents the number of times
x ∈ U occurs after taking n samples from D(U). For any n > 0,
let ri denote the i-th largest value of: FU(n,x)|x ∈U, where r1 =

x ∈U{FU(n,x)} and r |U | = x ∈U{FU(n,x)}.
In CCN, consumers issue requests for content D with name N ,

denoted as D(N ). In this context, N is the application name of D.
The network name N̄ carried in the wire-encoded packet and used
to forward this request need not be N . In fact, we assume that con-
sumers apply some sort of obfuscation or encryption function to N
such that N̄ ! N . We use D(N ) and D(N̄ ) to refer to content iden-
tified by the given application and network names, respectively. If
N̄ is derived from N , then D(N ) = D(N̄ ).

After it is requested, D(N ) is carried in a content packet C(N̄ )
with the network name N̄ . Note that different network names N̄ 0

and N̄ 1 may be usedwhen requestingD(N ), inwhich caseC(N̄ 0) !
C(N̄ 1). This can occur if D(N ) is uniquely encrypted for different
consumers. Conversely, it always holds that: if C(N̄ 0) = C(N̄ 1),
then both responses carry the same application data D(N ). Recall
that it is not a requirement for a content object to carry a CCN
name. However, a content object always carries an explicit or im-
plicit identifier that can be matched to a value computed from
the corresponding interest. For example, if C(N̄ ) does not carry
a name, then its hash digest must match what is provided in N̄ . In
this case, we use the same notation for the sake of clarity.

4 THREAT MODEL
This section describes the attack on privacy, which is the focus
of this paper. We also present the assumed adversary model and
auxiliary information.

4.1 Privacy Primer
Recent work on CCN privacy [11] outlined conditions for mitigat-
ing a range of eavesdropping attacks. Two measures of privacy
were identified: weak and strong. The former holds if neither a
matching interest nor content packet leaks any information except
for equality. Strong privacy means that such correlation is impossi-
ble; it has strong implications on how interest and content packets
are protected in transit. First, both must be protected via seman-
tically secure (or CCA-secure) encryption scheme, which implies

that consumers would not benefit from content caching.3 More-
over, consumers and producers must either share pair-wise keys
(for symmetric encryption) or use expensive public-key crypto-
graphic operations to protect packets. Both seem to negate claimed
benefits of CCN.

We believe that weak privacy is preferable in order to retain
most benefits of CCN. However, it is subject to so-called frequency
analysis attacks, if A has auxiliary information about underlying
content [11]. Such information can be extracted from a variety of
sources, including the target application (e.g., Netflix or Spotify),
publicly-available statistics (e.g., income statistics for a certain de-
mographic or public financial records), or prior versions of content
(e.g., a history of the Netflix or Spotify media catalog). In these at-
tacks, A uses its knowledge about content popularity, along with
observed interests, to infer which interest corresponds to which
content. Asmentioned above, this is similar to attacks on encrypted
databases. In that model,A corrupts a server storing an encrypted
database and observes database queries. A’s goal is to determine
the plaintext value of each encrypted record based on auxiliary in-
formation and observed queries [27].

The attack scenario in the database scenario does not map di-
rectly to the frequency analysis attack outlined in [11]. In the for-
mer, onceA compromises the target server, it can observe all queries.
In contrast, in CCN,A is a collection of one or more compromised
routers that observe network traffic. Therefore, by compromising
a single router, A does not automatically get access to all queries
for the target content. This is a critical fact in CCN: distributed na-
ture of the network (particularly, existence of router caches) means
that A has far less information than in the database scenario. In
this work, we explore how this gap affectsA’s success in attacking
CCN privacy.

4.2 Adversarial Model
We assume that A is a distributed and active adversary that aims
to learn information about statically encrypted, or weakly private,
content shared amongmultiple consumers. Encryption is not ephemeral,
i.e., packets are not encrypted in transit between producers and
consumers. Thus, we assume thatA can correlate interest and (en-
crypted) content packets referring to the same application data.A
can compromise a subset of routers on the path between arbitrary
consumers and the nearest copy of the requested content. Once a
router is compromised,A can observe all packets that it processes.
A can also spawnmalicious consumers that probe the network for
content and can populate non-compromised routers’ caches with
copes of that content. However,A can not compromise either con-
sumers that issue interests for content or producers that respond
to interests with encrypted content packets. A realistic example of
A could be a state-sponsored entity or a set of colluding Internet
Service Providers (ISPs).

4.3 Adversarial Information
Let P be a set of application data items, and let C be the set of
encrypted content packets used to carry items in P through the
network. That is, for each p ∈ P, there is an encrypted form in C.
Let T : C → P be the truth mapping from the encrypted content
3Except for the case of interest re-transmission.
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to their plaintext data counterparts. We assume that all consumers
issue interests for content objects ∈ P according to some real pop-
ularity distribution DR(P).
A is given access to some fixed auxiliary information about this

popularity distribution, called DAA (P). Moreover, at any time t ,
A has access to a snapshot frequency distribution, denoted F A :
T × C → N. That is, for each item c ∈ C, F A(t , c) is the num-
ber of times c was observed by A up t . The set of items from C
observed by A at time t is O(t). Using F A , A can create an em-
pirical distributionDE (C) of the popularity of each observed item.
IfA is a global adversary, thenDE (C) approximatesDT (P) under
the truth mapping T . Essentially, DAA (P) isA’s approximation of
DR(P).

5 ATTACK OVERVIEW
We now describe the frequency analysis attack adapted from the
encrypted databases scenario [27]. In our setting, encrypted or oth-
erwise obfuscated interests are analogous to queries for encrypted
database records. The entire network, comprised of caches and con-
tent, is equivalent to one giant database. The adversary can eaves-
drop on all (or parts of) the network (database) and, as a result, can
view all (or some) interests and content (queries and records). This
access, along with auxiliary information about popularity of con-
tent (records), is sufficient to perform the attack. More concretely,
the core idea is as follows:

A learns (or is given) some auxiliary information about popularity
distribution of application names, or content, i.e., P.A also observes
empirical popularity distribution of interests for encrypted content,
i.e., C. In doing so,A seeks to learnT , i.e., which items in C map to
items in P. A succeeds if it learns any of these with non-negligible
success probability.

In a frequency attack at time t ,A combinesDAA (P) andF A(t , c),
as follows: First,A ranks items in F A(t , c) in order of descending
popularity. Then, for each ci ∈ O(t) in decreasing order according
to F A(t , c), A guesses that ci corresponds to the ith most pop-
ular item pj based on DAA (P). Let be a function that sorts a
histogram in descending order of frequency. Algorithmically, the
attack works as follows:

• ρ ← (Hist(O(t)))
• π ← (Hist(P))
• Compute a mapping α : C→ P such that, for all c ∈ C:

α(c) =
⎧⎪⎨⎪⎩
π [Rankρ (c)] if c ∈ O(t)
⊥ if c " O(t)

The result of the attack is α – the guessed mapping from encrypted
data items to their plaintext form.

Accuracy of the attack is defined as follows: Let R(α ,T ) be a
function that counts the number ofA’s correct guesses. A correct
guess is such that α(c) = T (c). R(·) computes the total number of
guesses by A. We say the match percentage is the total number of
correct guesses divided by |P|. By itself, the match percentage may
be misleading, e.g., if the dataset is large and has a long tail with
items that have near-equal popularities. Thus, we are also inter-
ested in partial accuracy of the attack. We define partial accuracy

as a function S(·) that takes an index i ≤ |ρ | along with ρ, α , and
T and computes:

S(i, ρ,α ,T ) =
i∑

j=1

∑j
k=1

(j, ρ,α ,T )

|ρ | ,

where:

(i, ρ,α ,T ) =
⎧⎪⎨⎪⎩
1 if α(ρ[i]) = T (ρ[i])

0 if α(ρ[i]) ! T (ρ[i])
Intuitively, at index i , this computes percentage of guesses that are
correct up to i . For example, it is likely that S(1, ρ,α ,T ) ≈ 1.0 if
A’s auxiliary information and observances are highly accurate. In
some cases, the total accuracy of the attackmight not matter, while
it might be important ifA can correctly guess only a small number
of items with a very high probability.

6 SIMULATING THE ATTACK
We now describe the simulator for evaluating the frequency anal-
ysis attack. Its source code is available online at [32].

6.1 Content Distributions
To assess the attack we need realistic information about popular-
ity distributions. Unfortunately, since there are no real-world de-
ployments of CCN (or other ICN architectures), we must rely on
information from current web content traces. Fortunately, there
has been a great deal of work studying the popularity of web con-
tent. Breslau et al. show in [4] that web content does not follow a
strict Zipf distribution, as often suggested. Instead, it adheres to a
Zipf-like distribution where the ith most popular page is requested
with probability proportional to i−α , where α ∈ [0.6, 2.5] [2, 8, 14,
15, 20, 26, 30]. Thus, unless stated otherwise, we hereafter use the
Zipf distribution to model real content popularity.

6.2 CCN Simulator
We implemented a custom CCN simulator for this study. We chose
not to use available ccns3Sim or ndnSim because we do not need
to take into account network behavior at a layer below CCN in
the network stack. The attack is sufficiently generic that we only
need a way to control interest and contents. Our simulator allows
a user to create an arbitrary network topologyG composed of sets
of: consumers , routers , and producer(s) . Once created,A is
realized as a subset of compromised entities.

Each router has a cache with probability pc . We represent a net-
work configuration by its topology graph G = ( , , , ),
where represents routers controlled by A. A network with
cache probability4 pc is denoted as (( , , , ),pc ).

The next step is to create the content universe . Next, a prob-
ability (popularity) distribution is assigned to , denoted D( ).
Consumers sample their interests from this distribution.5 We also
allow auxiliary information distributionDAA (P) to be imposed on
the content universe. This distribution is given to A.
4By cache probability we mean the probability that any node in the network employs
a cache. The size of which is bounded to 10, 000 items. This size was chosen so that
caches did not suffer constant churn and content was retained for longer than a single
consumer-to-producer round trip.
5Currently, only Zipf and Uniform distributions are supported. However, it is easy to
add, and experiment with, new distributions.
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(a) Uniform popularity and auxiliary information (b) Zipf popularity and uniform auxiliary informa-
tion

(c) Zipf popularity and auxiliary information

Figure 1: Attack accuracy with varying auxiliary information and content popularity
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Figure 2: Attack accuracy as a function of ∆(DR ,DA) and
simulation time

Once the simulation is configured, it runs for a number of epochs.
At each epoch, a random consumer c ← sends an interest for
content C ← , i.e., sampled according to true content popularity
distribution. An interest is forwarded until it: (1) resuts in a router
cache hit, or (2) reaches the producer. Then, a content packet is
sent back to the consumer. Each A-controlled node records the
interests it sees during this process. When the simulation com-
pletes, observed results from each A-controlled node are merged
to formA’s complete view of the network. (Specifically, frequency
histograms are merged together into one.) This is then fed into the
frequency analysis attack along with true popularity distribution
and auxiliary information. The output of the attack is the match
percentage and A’s accuracy, as described in Section 5
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Figure 3: Attack accuracy as a function of content sample
size and simulation time

7 GLOBAL EAVESDROPPER ATTACKS
In this section we experimentally assess efficacy of the frequency
analysis attack by a global A, denoted by AG , which is assumed
to have access to every interest issued by every consumer in the
network. In this model, we need to answer the following question:

Given content popularity distributionDR andAG
with auxiliary information distributionDA, towhat
extent canAG successfully correlate encrypted in-
terest and content packetswith their plaintext coun-
terparts?

As mentioned in Section 5, we consider total and partial success by
AG , since encryption protects every packet equally.We first assess
attack accuracy with various DR and DA. Results are shown in
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Figure 4:Match percentage forA distributed across edge and
all network routers.

Figure 1. With the exception of simulation noise, accuracy is very
low when either distribution is uniform. However, when DA is
statistically close to DR , attack accuracy becomes very high.

Next, to understand the extent to which statistical distance af-
fects this attack, we conducted the following experiment. First, we
created a content universe U of size N . Then, for each considered
probability distribution, we created DR and DA for P. We consid-
ered uniform distribution as a baseline (i.e., the case ofAG having
no auxiliary information) and Zipf distribution with parameters
α ∈ [0.5, 2.5]. We then ran the simulator for τ time steps. Finally,
we simulated the frequency analysis attack, measured accuracy of
resultant guesses, and computed∆(DR ,DA). The matching prob-
ability, as a function of ∆(DR ,DA), for various DR , is shown in
Figures 2. It illustrates that, as ∆(DR ,DA) increases, matching
percentage decreases, as expected. However, the rate of decline is
low, meaning that even some statistical equivalence is sufficient
for the attack.

Size of content universe has a non-negligible effect on attack
accuracy. Intuitively, with more options to choose from,AG ’s task
of finding the correct mapping becomes more difficult. To show
this, we repeated the same experiment as above except with fixed
DR and DA, while varying N . Results are shown in Figure 3. As
expected, as N increases, matching percentage quickly decreases.
This is because each mapping entry becomes more sensitive, as
probability space is thinned.

8 DISTRIBUTED EAVESDROPPER ATTACKS
Admittedly,AG is not the most realistic adversary. In practice, ad-
versaries will likely be localized in small groups of possibly col-
located routers. For example, A could exploit software running
in edge access points to observe traffic closest to consumers, or
it could subvert an AS and compromise some or all of its routers.
We now consider a distributed adversary under a variety of scenar-
ios, in order to assess the relationship between network caching,
content location, and A’s topological distribution. Each of these

Figure 5: Attack accuracywith varying cache presence in the
network

variables impacts the type and number of samples observed byA,
which are the main components of the attack. As quality of this
information degrades, so should attack accuracy.

We conducted all experiments described below over a topology
based on Deutsches ForschungsNetz (DFN). It consists of 160 con-
sumers, multiple producers attached to edge routers, and multiple
routers (more than 30).

8.1 Adversary Distributions and Caching
Effects

Attack accuracy increases as a function ofA’s coverage. As shown
in the previous section, accuracy can be quite high ifA can observe
all traffic. However, as A’s presence declines, so does the number
of samples observed. We consider two A topological configura-
tions: (1) distributed among some fraction of edge routers, and (2)
distributed among a random fraction of all routers. To explore the
impact ofA’s topological distribution, we conducted an attack ex-
periment on:

(( , , , ),pc )

where pc = 0.5 and is nearly 25 of edge routers or 25
of all routers. Results in Figure 4. show that, in the edge case, A
attains higher accuracy for high ranking content. This is because
its knowledge of interest frequency is more complete, due to dupli-
cate interests not being masked by caches.

Caching also plays an important role: if enabled in every router,
there should be, in theory, less traffic traversing the network. Thus,
A would observe fewer samples of encrypted content6; thus attack
accuracy would necessarily decline. This is an interesting relation-
ship explored in [1]. In some scenarios, caching can be easily ex-
ploited to violate privacy of individual consumers. However, with
respect to content, caching complicates the attack.

To explore this relationship, we experimented with:
(( , , , ),pc )

6Assuming that A is not located at the edge.
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Figure 6: Attack accuracy with producer replication.

where pc ∈ {0.0, 0.5, 1.0}. Each router has a 0.25 probability of
being compromised. Results in Figure 5 show that, when caching
is disabled, A is correct (for high ranking content) with greater
probability than if caching is globally enabled. This is a direct result
of observing fewer samples.

8.2 Replication Effects
Replication is another important factor in attack efficacy. Similar to
caching, replication allows interest and content packets to bypass
A and cause it to observe less traffic. To understand the extent
to which replication deters the frequency analysis attack, we con-
ducted experiments on (( , , , ),pc ), where pc = 0.5
and | | ∈ {1, 2, 4}. A replicated producer publishes the same con-
tent under a different prefix7 in a different part of the network.
(We forced each replica to be sufficiently disjoint topologically in
order to to reduce the chance of two interests for different replicas
traversing the same path.) As shown in Figure 6, attack accuracy
decreases as the degree of replication increases. With more repli-
cas, consumers are free to stripe their interests across multiple pre-
fixes and, by doing so, potentially bypass A.

9 POPULARITY INFERENCE
The frequency analysis attack requires DE (C) and DAA (P). The
former is needed to approximate DR(P). The latter is not always
readily available by eavesdropping. Fortunately, by exploiting prop-
erties of CCN, it can be learned. Armed with knowledge of the
public namespace for a set of content, i.e., network names N̄ , A
(acting as a malicious consumer) can build DAA (P) by probing the
network. (Recall that, in this work, network names are encrypted,
and the adversary can not learn their contents. Thus, knowledge of
the network name does not lead to knowledge of the correspond-
ing application name.) Specifically,A can query for known names
and, based on response time, infer whether corresponding content
is cached. This sort of inference attack is similar to the invasive
7For example, an Akamai replicamight use the/akamai, while a Fastly replicamight
use the /fastly prefix.

Algorithm 1 InferPopularity
1: Input: N , r , tc , ϵ
2: Output: α : N → N
3: for N ∈ N do
4: α [N ] = 0
5: end for
6: for i = 1, . . . , r do
7: for N ∈ N do
8: Nh = N ; Nm = (N , 128)
9: tN = ()

10: Send requests for Nh and Nm in parallel and record their time of arrival in thN and
tmN

11: ∆N = | |(thN − tN ) | − |(tmN − tN ) | |
12: if ∆N > ϵ then
13: ρ[N ] = ρ[N ] + 1
14: end if
15: Sleep for tc
16: end for
17: end for
18: return α

cache probe attack in [18], which works as follows:A aims to learn
whether some nearby consumer asked for content named N . To do
so, it requests N and relies on timing information to learn whether
this content was served from a cache. (Response time lower than
the consumer-to-producer RTT means that requested content was
served from a cache.)

The rate at which it probes the network is important since A
must be able to differentiate between cached copies that it itself in-
jected into the network by probing, and actual cached copies previ-
ously requested by nearby consumers. Let tc be the characteristic
time of a cache [6]. If LRU cache eviction policy is used, then tc is
average time elapsed between the last request for an item and its
eviction. If the cache uses FIFO or random policy, then tc is aver-
age time between insertion and eviction. For simplicity, we assume
that all routers use LRU. tc tells A the expected time interval be-
fore an item is evicted. In turn, this can be used as a lower bound
on probe frequency fp , i.e., fp > 1/tc .

Assuming A knows tc , the probing algorithm runs as follows:
Let (N , λ) be a function that, given
input name N , samples a random bit-string of length λ and ap-
pends it toN as the last name component. This effectively creates a
unique name for which a cache hit is impossible, with overwhelm-
ing probability. Given name universeN ,A iterates through the set
and, for each N ∈ N , issues a pair of interests (probes): Nh = N
and Nm = (N , 128), and records
time tN . It then waits to receive the corresponding content pack-
ets (named Nh and Nm ), and records their respective arrival times
thN and tmN .8 When both are received, A computes:

∆N = | |(thN − tN )| − |(tmN − tN )| |
If∆N > ϵ for some constant ϵ ,Alearns that an interest forNh was
satisfied faster than that for Nm , which went all the way to the
producer. Therefore, A learns that a cache hit occurred. A then
sleeps for tc before proceeding to the next name in N . This pro-
cess is repeated to incrementally build the EDF of the namespace.
This procedure is shown in Algorithm 1, where r is the number of
namespace iterations to complete before producing the estimated
auxiliary popularity map ρ, and tc is a known characteristic time.
8Recall that Interest Returns are sent in response to interest requesting non-existing
content. This guarantees that every request receives a response, barring any packet
loss.
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Before assessing this algorithm, we consider its runtime, which
is approximately r |N |tc max , where max is the maxi-
mum RTT for any interest probe-pair. This is clearly infeasible as
N grows. Therefore, we recommend implementing a parallelized
variant of this algorithm. Specifically, instead of traversing N in
sequence, A can do it in parallel and only sleep for tc in between
each successive probe for N . Given P processing units, runtime is
lowered to rtc |N |P max , since each name can be processed in
parallel.

We evaluate this algorithm as follows. Using ccns3Sim [29], we
created a simulation that contained n consumersCr1, . . . ,Crn , one
“monitor” Cr∗, (A), and a single producer with S content objects.
We chose S = 50 and S = 100 for our simulations here to illus-
trate the efficacy of this attack. Each consumer is given access to
all these content names. Popularity of content in this collection fol-
lowed a Zipf distribution with α = 1.5. Nodes were arranged in a
star topology with a single caching router between them. Storage
size of the caching router matched that of the content collection.
Each consumer, Cri ,i = 1, . . . ,n, requested a random name from
the content collection every second. Meanwhile, Cr∗ executed Al-
gorithm 1. At the end of the simulation, actual frequency distribu-
tion of content (as perceived) by the producer and the observed fre-
quency distribution of Cr∗ are collected and shown in Figure 7. It
demonstrates that the attack algorithm can learn, with fairly high
accuracy (for the given values of S), the actual popularity distribu-
tion solely by exploiting router caches. (Of course, this accuracy
may decline as S increases further. We plan to explore this degra-
dation in future work.)

The popularity inference attack works if the namespace is static
and enumerable. However, it no longer applies if the namespace is
dynamic or otherwise unpredictable.

9.1 Estimating Characteristic Time
Probing frequency fp must be large enough such that all router
caches on the A-to-producer path evict stale content between se-
quential probes for the same content. Therefore,A needs to know
maximum tc∗ for all on-path routers. Assuming interests for N
issued by other consumers follow a Poisson Arrival process with
rate λN , probability that a probe for N results in a cache hit (for
any cache) can be characterized as in [9]:

hN = 1 − e−λN tc ∗

For a given Ri on the A-to-producer path, t ic is a constant that
satisfies:

∑

N ∈N
(1 − e−λN t ic ) = C,

whereC is capacity of the LRU cache. To approximate tc∗,A must
therefore know: (a) capacity of each on-path router and (b) names-
pace from which content can be requested. Though possible, it is
highly unlikely thatA would learn all this information. Therefore,
it must be approximated. One trivial way to do this is to assume a
largeC and modest λN to represent each cache and all names. This
would not yield a value close to tc∗. However, since the inference
algorithm does not require precision in the characteristic time, this
is acceptable.

10 DISCUSSION
We now discuss the efficacy of the privacy attack and importance
of caching and namespace enumeration in mitigating this attack.

10.1 Attack Efficacy
Success of the attack relies on three key pieces of information:
DAA (P),DR(P), andDE (C). IfDAA (P) is perfect, i.e.,∆(DAA (P),DR(P)) ≈
0.0, the attack’s success depends on accuracy of empirically ob-
served popularity distribution. This is because A uses its knowl-
edge of observed popularity to map items in P to C. Put another
way, the attack is most successful when the following conditions
hold:

∆(DAA (P),DR(P)) ≈ 0.0

∆(DE (C),DAA (P)) ≈ 0.0

As shown earlier, A’s topological placement, the use of caching,
and distribution of content across the network all play a role in
widening the gap between these distributions. One definite coun-
termeasure requires forcefully widening the gap between any of
these distributions. If A is localized within a part of the network,
then distributing content across multiple locations can help bypass
it. However, if A is topologically wide-spread, enabling caching
limits the number of events observed, thus making attacks more
difficult. Ultimately, attack’s efficacy is a function of A’s location.

10.2 Caching and Privacy
Based on our discussion thus far, it is evident that caching can
both help and hurt privacy. Lauinger et al. [18] and Acs et al. [1]
showed that a cache can be exploited as an oracle to allow A
to learn when popular content is requested by nearby consumers.
This attack uses a timing side-channel based on router caches. It
works by requesting popular content from the network via inter-
est “probes” and trying to discern if they have been served from a
nearby cache. Similarly, probing attacks that target content produc-
ers can be used to discover whether certain content was recently
served. One mitigation strategy is to remove the timing channel by
requiring caches to artificially delay responding to interests that
are marked as “private”.

In this paper, we showed that caching can help privacy by hin-
deringA’s ability to conduct frequency analysis attacks. These at-
tacks do not directly rely on the timing side-channel. Instead, they
rely on the content popularity side-channel. The only step that re-
lies on timing is when A estimates content popularity distribu-
tions. Without caches, interest frequency is not dampened before
reaching A. Therefore, caching is encouraged. Moreover, timing
side-channel mitigation from [1] does not make this attack any eas-
ier; it only increases latency for consumers.

An alternate attack mitigation strategy is to protect interest and
content packets with semantically secure encryption (see [11] for
more details). This would obviate any on-path caching and make
each interest-content pair unique. However, though it would miti-
gate frequency analysis attacks, impact on the network (especially,
in terms of congestion) would likely be substantial.



When Encryption is Not Enough:
Privacy Attacks in Content-Centric Networking ICN ’17, September 26–28, 2017, Berlin, Germany

(a) S = 50 items (b) S = 100 items

Figure 7: EDF inference attack accuracy

10.3 Namespace Enumeration
If DAA (P) is unknown, feasibility of the frequency analysis attack
relies on A’s ability to enumerate the content namespace. This
is possible if: A (a) knows all content names a priori, (b) can dis-
cover or learn them through external means, (c) can derive them by
some namespace convention, e.g., if namespace structure is well-
defined, or (d) can learn them from some search engine. Regardless
of the method, public content is always enumerable. (If it were
not, no one would be able to access it.) Therefore, restricting or
controlling enumeration is only possible for restricted content, for
which privacy is probably the most important. Thus, if there are
access control mechanisms that require consumer authentication
before requesting content, enumerationwould be restricted to only
authorized consumers. This might suffice for some applications.
However, consider a CCN-based media distribution service sim-
ilar to Netflix. Every authorized consumer has access to (essen-
tially) the same content and discovery mechanisms. Since access
is pervasive across the entire content collection, enumeration is
not preventable. For example, in the Netflix example, every client
can search for and discover the same protected content.

Note that shortening the lifetime of a name-to-content binding
does not help prevent enumeration. CCN requires every content
object to have at least one name. Therefore, a producer could up-
date the name-to-data bindings at regular intervals. However, ifA
can discover this binding in a given time epoch, it can also almost
surely do the same for the next epoch. What matters for the at-
tack considered in this work is how many times a specific content
is requested, and not howmany times a specific name is requested.

11 RELATEDWORK
Privacy in CCN and related architectures was first addressed in [5].
They highlight several areas where privacy is at risk and mention
possible fixes ormitigations. Ghali et al. [11] formalize the notion of

data privacy and show under what circumstances privacy is and is
not possible in CCN. So-called weak privacy requires requests and
content to be encrypted, as is presumed here. Our results show that
in practice this is often insufficient. Inference attacks on encrypted
database systems were recently studied by Naveed et al. [27]. Their
results inspired our work.

Privacy issues outside of the core request and response protocol
have been explored in the context of caches [1, 22, 23]. These re-
sults focus on determining whether two consumers requested the
same content by “probing” network caches for content based on
its name. Strong request privacy deters such attacks while weak
request privacy only minimizes their likelihood of success. This
type of probing attack was first explored by Lauinger et al. [17–19].

As shown byGhali et al. in [11], encryption is a necessary though
not sufficient condition for privacy in CCN. Many variations of
encryption-based access control exist, including those built on group-
based encryption [31], broadcast encryption [21], attribute-based
encryption [12], and proxy re-encryption [34]. Kurihara et al. [16]
and Yu et al. [35] providedways to generalize access control mecha-
nisms – the former using explicit configuration via CCNmanifests
and the latter using NDN names. Interest-based access control [10]
protects requests instead of responses. (However, it does not pre-
clude responses being encrypted as well.) The main idea is that the
content name can only be derived by authorized consumers.

Transparent packet security, i.e., network-layer encryptionwith-
out application awareness, was proposed by Wood in [33]. A TLS-
like key exchange protocol used to build secure sessions for ephemeral,
end-to-end security in CCNwas described byMosko et al. in [25]. A
network-layer tunnel for similar privacy guarantees was designed
and implemented by Oliviera-Nunes et al. in [28].



ICN ’17, September 26–28, 2017, Berlin, Germany Cesar Ghali, Gene Tsudik, and Christopher A. Wood

12 CONCLUSIONS AND FUTUREWORK
In the context of the popular CCN architecture, this paper investi-
gated a privacy attack that is based on content popularity. In this at-
tack,A, that knows some auxiliary information and can eavesdrop
on traffic, can correctly map statically encrypted content packets
to their plaintext counterparts. However, the same attack does not
work with dynamically generated content. Beyond A’s position
in the network, this attack is dependent on the extent of router
caching and content replication. We also showed that knowledge
of a namespace is sufficient for A to approximate popularity of
content in that namespace. Results suggest that, in order to miti-
gate such attacks, content namespaces should be restricted or oth-
erwise not enumerable.

In terms of future work, we plan to sanity-check our experimen-
tal findings with a companion qualitative analysis. We also intend
to improve and optimize the custom simulator to enable faster
experimentation. Moreover, we would like to develop a simpler
means of configuring network and adversary topological informa-
tion, thereby enabling more comprehensive experimentation. Fi-
nally, we plan to adapt and extend the frequency analysis attack to
current IP-based applications.
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