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Abstract—Content-Centric Networking (CCN) is a communi-
cation paradigm that emphasizes content distribution. Named-
Data Networking (NDN) is an instantiation of CCN, a candidate
Future Internet Architecture. NDN supports human-readable
content naming and router-based content caching which lends
itself to efficient, secure, and scalable content distribution.
Because of NDN’s fundamental requirement that each content
object must be signed by its producer, fragmentation has been
considered incompatible with NDN since it precludes authentica-
tion of individual content fragments by routers. The alternative
is to perform hop-by-hop reassembly, which incurs prohibitive
delays. In this paper, we show that secure and efficient content
fragmentation is both possible and even advantageous in NDN
and similar content-centric network architectures that involve
signed content. We design a concrete technique that facilitates
efficient and secure content fragmentation in NDN, discuss its
security guarantees and assess performance. We also describe
a prototype implementation and compare performance of cut-
through with hop-by-hop fragmentation and reassembly.

I. INTRODUCTION

The Internet is a de facto public utility used by a significant
fraction of humankind who rely on it for numerous daily ac-
tivities. However, despite unparalleled success and unexpected
longevity, the current TCP/IP-based protocol architecture may
be obsolete. To this end, several research efforts to design a
next-generation Internet architecture have sprung up in recent
years [25].

One key motivator for a new Internet architecture is the
fundamental shift in the nature of traffic: from the mainly
low-bandwidth interactive (e.g., remote log-in) and store-
and-forward (e.g., email) nature of the early Internet to the
web-dominated Internet of today. At the same time, massive
and rapidly-increasing amounts of content are produced and
consumed (distributed) over the Internet. This transpires over
social networks such as Facebook, media-sharing sites such
as YouTube and productivity services such as GoogleDocs.
Consequently, the emphasis of Internet communication has
shifted from telephony-like conversations between two IP
interfaces to a consumer who wants content delivered rapidly
and securely, regardless of where it comes from. This moti-
vates reconsidering the Internet architecture.

Content-Centric Networking (CCN) [15], [17], [19] is an
approach to (inter-)networking designed for efficient, secure
and scalable content distribution [17]. In CCN, named content
– rather than named interfaces or hosts – are treated as first-
class entities. Named-Data Networking (NDN) [24] is an
example of CCN which stipulates that each piece of named
content must be signed by its producer (also known as a
publisher). This allows trust in content to be decoupled from
trust in an entity (host or router) that might store and/or
disseminate that content. These features facilitate in-network
caching of content to optimize bandwidth use, reduce latency,
and enable effective utilization of multiple network interfaces
simultaneously.

NDN is an on-going research effort and one of several
architectures being considered as a candidate future Internet
architecture. Other such efforts include: ChoiceNet [34], XIA
[16], Mobility-First [30] and Nebula [2]. Regardless of which
of these (if any) efforts eventually succeed, all of them need to
address some of the same issues, such as naming/addressing,
routing/forwarding and security/privacy.

One issue that straddles both networking (specifically,
packet forwarding) and security is fragmentation of large
packets. Originally present in IPv4 [28], intermediate frag-
mentation was deprecated in IPv6 [10] for a number of
reasons, many of which were identified by Mogul in [18], e.g.,
router overhead and code complexity. Also, there have been
attacks that took advantage of IPv4 reassembly [35]. Thus,
eschewing fragmentation made sense for IPv6. However, the
same might not hold for all network architectures. We show in
Section IV that, for some very different types of networking,
such as CCN/NDN, fragmentation is sometimes unavoidable
and might even be beneficial.

This work represents the first exploration of efficient and
secure fragmentation in the context of CCN/NDN. Its primary
value is the construction of a secure fragmentation scheme
which addresses several important security and efficiency
issues.

The intended contribution of this paper is two-fold: First,
we discuss, in detail, numerous issues related to fragmentation
of both interest and content packets in NDN and arrive at the
following key conclusions:

• Interest fragmentation is unavoidable: if encountered,
hop-by-hop reassembly is required.

• Content fragmentation is similarly unavoidable.
• Minimal MTU discovery helps, but does not obviate the

need for fragmentation.
• Intermediate reassembly is viable but buffering can be

costly and latency is problematic.
• Intermediate re-fragmentation is also unavoidable for

content fetched from router caches.
• Reconciling cut-through forwarding of fragments (no

intermediate reassembly) with content authentication is
possible in an efficient manner.

Second, we construct a secure fragmentation and reassembly
method for content-centric networks architectures, exemplified
by NDN. We call this method Fragmentation with Integrity
Guarantees and Optional Authentication, or FIGOA. It sup-
ports fragmentation of content packets at the network layer
and allows cut-through switching in routers by avoiding hop-
by-hop fragmentation and reassembly, thus lowering end-to-
end delay. FIGOA employs a delayed authentication method
similar to [33], which allows routers to efficiently verify
signed content based on out-of-order arriving fragments. In
the event that a given content ultimately fails either integrity
or authenticity checks, reassembly and eventual delivery of
corrupt content to consumers is prevented.



a) Organization: Section II provides some background
on NDN. Then, Section III summarizes fragmentation in IP.
Fragmentation issues in NDN are discussed Section IV. The
proposed FIGOA scheme is presented in Section V. Section VI
describes its prototype implementation which is then evaluated
in Section VII. Next, Section VIII overviews related work. The
paper ends with the summary and future work in Section IX.

II. NDN OVERVIEW

This section overviews NDN. In case of familiarity with
NDN, it can be skipped with no lack of continuity.

NDN supports two types of packets: interest and con-
tent [7]. The latter contains a name string, actual data
(content), and a digital signature over the packet computed
by the content producer. Names are hierarchically struc-
tured, e.g., /ndn/usa/cnn/frontpage/news where “/”
is the boundary between name components. An interest
packet contains the name of the content being requested,
or a name prefix, e.g., /ndn/usa/cnn/ is a prefix of
/ndn/usa/cnn/frontpage/news. Content signatures
provide data origin authenticity 1.

All NDN communication is initiated by a (content) con-
sumer that sends an interest for a specific content. NDN
routers forward this interest towards the content producer
responsible for the requested name, using name prefixes for
routing. A Forwarding Information Base (FIB) is a lookup
table used to determine interfaces for forwarding incoming
interests, and contains [name prefix, interface] entries. Multi-
ple entries with the same name prefix are allowed, supporting
multiple paths over which a given name prefix namespace is
reachable. Akin to an IP forwarding table, the FIB can be
populated manually or by a routing protocol.

NDN communication adheres to the “pull” model, whereby
content is delivered to consumers only following an explicit
request (interest). NDN content includes several fields. In this
paper, we are only interested in the following:

• Signature – a public key signature, generated by the
content producer, covering the entire content, including
all explicit components of the name and a reference to
the public key (or certificate) needed to verify it.

• Name – a sequence of explicit name components fol-
lowed by an implicit digest (hash) component of the
content that is recomputed at every hop. This effectively
provides each content with a unique name and guarantees
a match with a name provided in an interest. However,
in most cases, the hash component is not present in
interest packets, since NDN does not provide any secure
mechanism to learn a content hash a priori.

• KeyLocator – a reference to the public key required
to verify the signature. This field has three options: (1)
verification key, (2) certificate containing the verification
key, or (3) NDN name referencing the content that
contains the verification key.

Each NDN router maintains a Pending Interest Table (PIT)
– a lookup table containing outstanding [interest, arrival-
interface(s)] entries. The first component of each entry reflects
the name of requested content, and the second reflects a set
of interfaces via which interests for this content have arrived.
When an NDN router receives an interest, it searches its PIT
to determine whether an interest for the eponymous content is
pending. There are three possible outcomes:

1Trust between a key and name prefix is an application concern [14].

1) If the same name is already in the router’s PIT and the
arrival interface of the present interest is already in the
set of arrival-interfaces of the corresponding PIT entry,
the interest is discarded.

2) If a PIT entry for the same name exists, yet the arrival
interface is new, the router updates the PIT entry by
adding a new interface to the set; the interest is not
forwarded further.

3) Otherwise, the router looks up its cache (called Content
Store) for a matching content. If it succeeds, the cached
content is returned and no new PIT entry is needed.
Conversely, if no matching content is found, the router
creates a new PIT entry and forwards the interest using
its FIB.

An interest might reach the actual content producer if no
corresponding content has been cached by any intervening
router on the path between consumer and producer. Upon
receipt of the interest, the producer injects requested content
into the network, thus satisfying the interest. The content is
then forwarded towards the consumer, traversing the reverse
path of the preceding interest. Each router on the path flushes
state (deletes the PIT entry) containing the satisfied interest
and forwards the content out on all arrival interfaces of the
associated interest. In addition, each router may cache a
copy of forwarded content. Unlike their IP counterparts, NDN
routers can forward interests out on multiple interfaces.

III. FRAGMENTATION SYNOPSIS

We define fragmentation as a means of splitting large
packets into smaller packets, at the network layer, independent
of the content publisher and without changing any actual
content. This is in contrast with segmentation, where a content
publisher splits a large content object into smaller ones,
signing and naming each separately. TCP/IP has an analogous
dichotomy: TCP segments a byte stream into IP packets,
whereas, IPv4 can fragment IP packets into smaller packets in
order to fit them into a link MTU.

Since the late 1980s, network-layer fragmentation has been
widely considered to be a headache and something to be
avoided, based primarily on the IPv4 experience [18]. We
briefly discuss pertinent IPv4 fragmentation concepts below.

Packet fragmentation is not a singular concept; it can
be divided into two types: source-based and network-based.
Source-based fragmentation is performed exclusively by the
sender and is relatively simple. Assuming knowledge of the
Maximum Transmission Unit (MTU) for a given path to the
destination, the source can fragment a packet with almost2
no fear that further fragmentation might be encountered along
the path. Of course, knowledge of the MTU does not come
for free; an MTU discovery protocol is needed, e.g., [21].
Also, the entire premise of source-based fragmentation is
questionable: Why should the source fragment a large IP
packet instead of simply “segmenting” it into a sequence of
separate IP packets [20]? Source-based segmentation often
allows for more efficient use of smaller datagrams; for exam-
ple, segmented TCP datagrams can be individually ACKed,
whereas a larger TCP segment split using IP fragmentation
can only be processed as a whole by TCP.

Network-based fragmentation requires routers to support
extra functionality (i.e., additional code) which entails appre-
ciable processing overhead [18]. Having to fragment a packet

2Dynamic routing in IP may cause successive packets to take different
paths, affecting the source’s perceived MTU.



takes a router off its critical path and can thus cause conges-
tion; this can also be exploited as a denial-of-service attack.
Nevertheless, at a conceptual level, it can be claimed that
intermediate fragmentation offers better bandwidth utilization
than its source based counterpart, or no fragmentation at all.

Further issues are prompted by reassembly of fragments.
In IPv4, reassembly takes place only at the destination. Each
IP packet is allocated a buffer that stores fragments that have
arrived thus far (possibly out-of-order). Once all fragments are
received, the packet is physically reassembled and passed on
to the upper layer. This seemingly simple procedure has been
a source of many attacks and exploits [35]. Reassembly by
intermediate hops/routers is not viable in IP, since fragments
of the same packet are not guaranteed to travel the same path.

IV. FRAGMENTATION IN NDN

NDN does not provide explicit support for cut-through
fragmentation – only hop-by-hop fragmentation with reassem-
bly [22]. However, the current NDN implementation, which
runs as part of the NDN testbed [1], is implemented as an
overlay on top of TCP or UDP. In this setup, fragmentation
is handled by either (1) transport layer protocols, e.g., TCP
segmentation, or by (2) network layer protocols, e.g., IP
fragmentation. Moreover, if NDN is running directly over the
link layer, protocols such as NDNLP [32] can be used to
handle fragmentation. The main drawback of these methods
is that they all require reassembly at every hop.

The rest of this section discusses certain factors motivating
fragmentation in NDN. Using the terminology presented in
Figure 1, fragmentation is considered in the context of interest
and content packets, respectively.

Maximum Transmission Unit (MTU): largest unit (packet) size for network-
layer transmission over a given link between two adjacent nodes.

Publisher or Producer: an entity that produces and signs content; we use these
two terms interchangeably.

Consumer: an entity that requests (consumes) content.
Router: a network-layer entity that routes content but neither produces nor con-

sumes it (except perhaps for routing information).
Content object (CO): a unit of NDN data, named and signed by its pro-

ducer/publisher.
Content fragment (CF): a unit of NDN network layer transmission; content

fragment is the same as content object if the latter fits within the MTU
of a link between two adjacent routers.

Segmentation: a process of partitioning large content into separate content objects
by explicitly naming and signing each one. Can be performed only by a
producer of content.

Fragmentation: a process of splitting an (already signed and named) content object
into multiple content fragments. Can be performed by a producer, a router
or any other NDN entity that produces, stores or caches content.

Re-fragmentation: a process of splitting a fragment of a content object into
multiple fragments. Sometimes referred to as inter-network fragmentation
[18]. Can be performed by a router.

Reassembly: a process of re-composing a content object from its fragments. Can
be performed by a consumer or a router (in case of intermediate reassembly).

Fragment Buffering: a process of maintaining a stash of fragments until complete
packet reassembly becomes possible.

Cut-Through Switching (of fragments): forwarding of individual content frag-
ments without reassembly.

Fig. 1. Terminology

A. Fragmentation of Interests

As discussed in Section II, an interest packet carries the
name of content requested by the consumer. NDN does not
mandate any confidentiality, integrity or authenticity require-
ments for interest packets. Due to no limitations on the length
of content names, it is quite plausible that an interest packet
carrying a very long name might not fit into a network-layer
MTU, thus prompting the need for source-based and/or inter-
mediate fragmentation. Fortunately, this does not pose any real

challenges, since the “design space” of interest fragmentation
is very confined. Specifically, we claim the following:

Claim. If interest packets are fragmented and, possibly re-
fragmented, hop-by-hop (intermediate) reassembly of frag-
mented interest packets is unavoidable.

The intuition behind this claim is obvious: as described in
Section II, each router that receives an interest must search its
PIT and/or cache using the name carried in said interest. If
the name itself spans multiple fragments which are processed
independently without reassembly, such lookups are infeasible.

Furthermore, since the consumer issuing an interest has no
a priori knowledge of the smallest MTU on the path to the
closest copy of requested content, it cannot pre-fragment an
interest in order to avoid further fragmentation by intermediate
routers, unless there is a well-defined and globally-accepted
minimum MTU for NDN interests.

Based on the above, for the remainder of this paper, we
assume source-based (and possibly intermediate) fragmenta-
tion coupled with intermediate reassembly for interests. The
remaining discussion of fragmentation is limited to NDN
content packets.

B. Fragmentation of Content

Recall that NDN mandates each content to be signed by
its producer. This means that, in principle, any NDN entity,
whether router or consumer3 is able to check content integrity
and authenticity, based on the producer’s public key, itself
embedded in a separate signed content (a de facto credential
or certificate). The public key can be either referred to by
name in the content header, or embedded within the content.

Consequently, in order to abide by NDN tenets, fragmen-
tation must not preclude routers from verifying signatures, i.e.,
checking the authenticity and integrity of content. This speaks
in favor of either: (1) no intermediate fragmentation at all, or
(2) hop-by-hop (intermediate) reassembly.

1) Producer-based Fragmentation or Segmentation: At
first glance, there seems to be no reason for a content producer
to fragment large content. Instead, it can simply segment it
into individually named and separately signed content objects.
This segmentation approach is sensible for content meant to be
pushed (e.g., email) or generated dynamically, e.g., in response
to a database query. The segment size can be determined from
an MTU discovery protocol (see Section IV-B2 below). This
would ensure no intermediate fragmentation.

However, for content that is meant to be pulled (dis-
tributed), a producer may benefit from signing and naming it
once and not worrying about repeating a (possibly expensive)
segmentation procedure each time it receives an interest for
the same content. In this case, when an interest arrives, the
producer may choose to fragment a previously produced con-
tent object. This entails no real-time cryptographic overhead.
Alternatively, a producer could choose to segment content
using the smallest MTU of all of its interfaces, thus incurring
even less processing at interest arrival time.

An important issue is the content header overhead incurred
when generating small-size segments. Segmenting a large
object into many MTU-sized segments requires each of them
to have its own header, dominated by the Signature component
which itself contains a number of fields.

3Content signature verification is mandatory for consumers and optional
for routers.



8KB 32KB 128KB 512KB 2048KB

130

135

140

145

150

155

Size of initial object before segmentation

P
er
ce
n
ta
g
e
ov
er
h
ea
d
d
u
e
to

se
g
m
en
ta
ti
on

RSA-1536
RSA-2048

Fig. 2. Byte count overhead for small signed segments

Without getting into details of NDN signature format,
Figure 2 shows the overhead of segmenting larger objects
down to MTU size. We use a standard 1, 500-byte link MTU
and SHA-256 as the hash algorithm. We considered both RSA-
1536 and RSA-2048 signatures. The Signature field therefore
contains 12 bytes of fixed overhead (headers) and the actual
signature bits (192 bytes for RSA-1536, 256 bytes for RSA-
2048). However, estimating the exact size of the signature
field is more complex. This is because the KeyLocator
field, which is part of the signature field, can be of arbitrary
size (and if it carries a certificate, it can be very large). For
now, we assume a small 20-byte KeyLocator, along with a
SHA-256 hash. Figure 2 shows that there is a definite penalty
for segmenting at the publisher. Even in the most favorable
case (8KB data objects, RSA-1536), over 30% of the bits
are wasted on redundant information. As we move to larger
objects, this overhead can grow to 50%.

2) Whither Intermediate Fragmentation: Regardless of
whether a producer segments or fragments content, interme-
diate fragmentation cannot avoided or ruled out, since NDN
does not mandate a globally minimum MTU. Even if it
existed, segmenting content to adhere to this MTU might
be very wasteful due to poor bandwidth utilization on links
that have higher MTUs and increased overhead due to the
costs of signature generation by producers and verification by
consumers and, optionally, by routers.

Another possibility is to introduce an MTU discovery
method, whereby, an interest traveling towards requested con-
tent would carry a new field reflecting the smallest MTU
(µMTU) discovered thus far on its path.4 This is a viable
and light-weight approach, particularly because a content must
traverse, in reverse, the very same path taken by an interest for
that content. Hence, when the first entity that stores, caches,
or produces requested content receives an interest, it can use
µMTU to fragment (or segment, if this entity is the producer).
Note that “entity” could encompass: (1) an application-level
repository that only stores content, (2) a router that caches
content, or (3) a producer/publisher that generates its own
content. This way, fragmentation would occur only once per
interest.

However, fragmentation via interest-based µMTU discov-
ery does not eliminate the need for re-fragmentation. Consider
the following scenario involving content CO:

4This is actually the MTU of the opposite link direction from the direction
the interest traveled - links may have asymmetric MTUs.

1) Consumer A sends interest intA for CO to router R.
2) R receives and marks intA with µMTU =MTU(R→A)

(MTU corresponding to the R − A link). It then creates
a PIT entry for intA.

3) R forwards intA to the adjacent producer P .
4) Since MTU(P→R) > µMTU (R→A), P does not change

µMTU in intA.
5) P immediately satisfies intA, fragmenting CO according

to µMTU .
6) Meanwhile, between Step 3 and now, consumer B issues

interest intB and forwards it to R.
7) R receives intB and marks it with MTU(R→B) where

MTU(R→B) < µMTU . R collapses intB into existing
PIT entry for intA. At this time R is buffering fragments
which have arrived from P , however, not all fragments
of CO have arrived yet.

8) R partially satisfies intB using fragments available in the
buffer, previously forwarded to A. These fragments are
re-fragmented with MTU(R→B). Any further fragments
which arrive from P are also re-fragmented by R to B
using MTU(R→B).

Despite the fact that µMTU discovery does not eliminate re-
fragmentation, it is practically free in terms of extra processing
and bandwidth overhead. More importantly, it results in less
re-fragmentation, since it assures that re-fragmentation occurs
at most once for each collapsed interest at each intermediate
router. This can be particularly advantageous in the case of
monotonically decreasing MTUs where re-fragmentation must
occur at each hop. With µMTU, this is curtailed at the source
of content, which is either some intermediate router or the
producer, due to pre-fragmentation.

C. Considering Intermediate Reassembly

We now discuss intermediate reassembly, motivated by at
least two factors. First, we consider the case of increasing
MTUs on links that compose the reverse path taken by content
fragments on the way to the consumer. If MTUs increase
monotonically, it might make sense to reassemble fragments
(at least partially) to obtain better bandwidth utilization. How-
ever, this benefit is arguably outweighed by costs incurred
by reassembly, i.e., processing, memory, and code in routers.
The second factor is security. If a fragment does not carry
the content producer’s signature, how can a router check
its authenticity? As mentioned earlier, NDN stipulates that
routers, though not required to do so, must be able to verify
content signatures.

Hop-by-hop reassembly of content fragments would
clearly solve the problem and address both factors mentioned
above. With it, a router would receive fragments in arbitrary
order and neither cache nor forward them until all fragments
arrive. It would then reassemble them and verify the signature
with the producer’s public key (see Section V-E for more
details).

The main problem with hop-by-hop reassembly is in-
creased end-to-end latency, resulting into lower throughput
for adaptive algorithms such as TCP. Latency accumulates at
each hop, since all fragments need to be reassembled and then
re-fragmented for transmission. The alternative is cut-through
fragment forwarding, where each fragment is forwarded upon
arrival.

We attempt to evaluate the benefits of cut-through fragment
forwarding by considering a simple topology with a linear 8-
hop path with 100 Mb/s links. Each link accumulates 10ms



TABLE I. LATENCY DUE TO PER-HOP CONTENT REASSEMBLY

Number of flows
5 10 20 30 50 100

Inter-fragment gap (ms) 0.52 1.04 2.08 3.12 5.20 10.4
First-to-last fragment gap (ms) 3.22 6.34 12.58 18.82 31.30 62.50
E2E latency: reassembly (ms) 105.79 130.75 180.67 230.59 330.43 580.03
E2E latency: cut-through (ms) 83.22 86.34 92.58 98.82 111.30 142.50
Reassembly slowdown %-age 127.12 151.43 195.14 233.34 296.87 407.03
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Fig. 3. Latency with varying fragment counts per object

of latency, ignoring intra-hop and queuing delays. We assume
8, 400-byte content objects split into 7 fragments of 1, 300
bytes each.

Table I shows the slowdown caused by intermediate re-
assembly as each node waits for all fragments of an object, for
varying numbers of parallel flows (which controls the amount
of interleaving). The inter-fragment gap is the time elapsed be-
tween consecutive fragments of an object, caused by fragments
of other objects being interleaved. The first-to-last fragment
gap is the time elapsed between the arrival of the beginning of
the first fragment and the end of the last fragment. E2E latency
– reassembly is the total latency for each content object, with
intermediate reassembly. E2E latency – cut-through is the total
latency in case of an object fragmented at the first hop and all
fragments cut-through forwarded with no re-fragmentation or
reassembly in route. Finally, Reassembly Slowdown shows the
extra cost of reassembling and refragmenting at every hop, as
compared with cut-through forwarding.

Figure 3 shows the evolution of increased latency for
various object sizes and fragment counts. Using the aforemen-
tioned 8-hop topology, we vary the number of flows on each
link. Two links (close to the ends) have 10 flows across them,
two links have 20 flows, two links have 50 flows, and the two
core links have 100 flows. The graph shows that even a small
number of fragments can significantly increase latency over
commonly seen path lengths and flow counts. It takes only 6
fragments per object to double end-to-end latency of hop-by-
hop reassembly when compared to cut-through forwarding of
fragments. This clearly shows that any fragmentation scheme
that requires hop-by-hop reassembly of every content object
(as is the case today with CCNx [6] and NDNLP [32]) incurs
severe penalties in a wide-scale deployment. We believe that
content object fragments must be forwarded in a cut-through
fashion; consequently, our scheme implements this feature.

At this point, it is worth asking: should routers perform
reassembly and verify signatures? And if yes, which ones? We
believe that it does not make much sense for backbone routers

to do so since potential attacks are not likely to originate in
the backbone, but rather at the edges of the Internet. Signature
verification at stub AS (ingress) routers is more appropriate,
e.g., because of policy dictating that no fraudulent content
must reach consumers.5 Also, stub AS egress routers might
reassemble fragments and verify signatures if there is a policy
disallowing any fraudulent content to exit the AS, e.g., for
reasons of liability.

The above discussion yields a trivial observation that
reassembly implies ability to verify signatures. However, it
is unclear whether signature verification implies the need for
reassembly. This triggers the following challenge which we
attempt to address in the remainder of this paper:

Challenge. If content objects are fragmented (and, possibly
re-fragmented) and intermediate reassembly is not viable, can
routers still check content authenticity?

In other words, if verifying integrity/authenticity is the
main reason for intermediate reassembly, is there a way to
obtain the former while avoiding the latter?

V. SECURE FRAGMENTATION

This section describes a scheme called FIGOA: Fragmen-
tation with Integrity Guarantees and Optional Authentication.
It supports arbitrary intermediate fragmentation [18] of content
while preserving security, and without requiring intermediate
reassembly before forwarding all fragments.6 FIGOA does not
rely on in-order arrival of fragments, nor does it mandate
any type of fragment caching strategy. Also, it allows free
mixing of routers that do not perform intermediate reassembly
with those that do. It is primarily geared for routers that
support cut-through switching and maintain dedicated storage
for buffering content fragments, distinct from Content Store.
While cut-through fragment switching is generally beneficial,
it complicates signature verification, as discussed in Sec-
tion IV-C. FIGOA addresses this problem by using delayed
authentication (DA).

A. Delayed Authentication

Delayed authentication was first introduced in [33]. Its goal
was to “reconcile fragmentation and dynamic routing with
network-level authentication in IP gateways.” The essence of
delayed authentication is that a given packet’s authenticity can
be obtained from authenticity of its fragments. Packet authen-
tication is computed incrementally as individual fragments are
received (possibly out of order), processed and forwarded by a
router. This requires a queue for each partially received packet
that maintains the current state of partial verification. For
every fragment, incremental verification is performed, queue
state is updated, and the fragment is forwarded. Upon receipt
of the final fragment, the router completes verification. If it
succeeds, the final fragment (called a “hostage”) is forwarded.
Otherwise, it is discarded along with the entire queue. The
end-result is that the destination receives the packet in its
entirety only if it is verified by the router.7

The main differences between delayed authentication in its
original IPv4 context [33] and our proposed use in NDN are
as follows:

5Even though NDN stipulates consumer-based signature verification.
6A variant of FIGOA can be used in conjunction with intermediate

reassembly, with the key advantage of faster cryptographic processing.
7Recall that, in IPv4, the destination must flush all fragments of a packet

that it cannot reassemble, either due to a time-out or another error.



• Symmetric routing: unlike IP, where fragments of the
same IP packet might travel via different paths, fragments
of the same NDN content are guaranteed to traverse the
same set of NDN routers. This results in much higher
probability of ordered fragment delivery and faster time-
outs in cases of lost or corrupted fragments.

• Not just ingress routers: delayed authentication was ini-
tially designed for ingress routers (i.e., border routers of
the destination’s AS). In NDN, any intermediate router
can unilaterally choose to perform delayed authentication.

• Possible intermediate reassembly: in IP, only the desti-
nation reassembles fragments, whereas, any intervening
router can decide to reassemble whether or not it decides
to do cut-through forwarding.

• Signatures instead of MACs: delayed authentication was
initially proposed for authenticating IP packet traffic
flowing between two hosts (in two stub AS-s) that share
a symmetric key. Message authentication codes were
used for incremental fragment authentication. In NDN,
signatures are used to ascertain content authenticity.

B. Hash Functions

The only realistic means of authenticating content in
routers is by verifying signatures. This prompts the question:
how does one reconcile delayed authentication (of fragments)
with signatures?

We approach this issue by observing that a signature
is computed over a fixed-size hash (digest) of content, i.e.,
using the so-called “hash-and-sign” paradigm. A hash provides
integrity while a signature of a hash provides authenticity
or origin authentication. The underlying cryptographic hash
function H(·) must satisfy a set of standard properties [23].
Unlike a MAC or a keyed hash [4], a hash function requires
no secret key and can be computed by anyone.

Most modern hash functions operate on input of practically
any8 size. They typically use an iterative model, also known
as the Merkle-Damgård construction, whereby input is broken
into a number of fixed-size blocks and is processed one block
at a time by an internal compression function h(·). The latter
forms the core of the hash function; after processing each
block, it produces an intermediate value – internal state that
we call IS – that is usually of the same size as the final
hash. In case of the first block, the intermediate state is fixed
and referred as the Initialization Vector (IV). The last block is
typically padded with zeros followed by the total input size in
bits. For example, the well-known SHA-256 hash algorithm
[31] operates on 512-bit blocks, maintains 256-bit internal
state and yields a 256-bit hash.

In constructing FIGOA, we take advantage of internal state
produced by the underlying compression function h(·). The
main idea is to include, in each fragment, the internal state of
the hash function up to, but not including, that fragment. This
allows incremental hashing of each fragment without having
received either preceding or subsequent fragment(s).

C. FIGOA Description

From here on, we use additional notation presented in
Table II. The proposed scheme includes three main tasks,
described separately below.

8We consider 264 or 2128 bits as “practically any”.

TABLE II. NOTATION

β block size of h(·)
COn Raw (unsigned) content of total size n bits.

SIG(COn) Producer’s signature on COn.
CO

N
Signed version of COn of size N = n+ |SIG(COn)| bits.

bv,s Contiguous component of CO
N

where 0 ≤ v < N , i.e., bv,s
represents s bits, starting with offset v and ending with offset
v + s− 1, inclusive. s and v are multiples of β.

CFN
v,s Fragment of CO

N
that carries bv,s.

ISv Internal state of h(·) after processing v bits of input.
v is a multiple of β

hs Fragment header size, includes:
content name, v, s and ISv . See Section VI for details.

oMT U MTU of router’s outgoing interface.
aoMT U oMT U adjusted for fragment header size hs,

i.e., aoMT U = oMT U − hs
F Set of content fragments.
B Temporary buffer storing all fragments received so far.

1) Content Fragmentation: This task, shown in Algo-
rithm 1, is triggered whenever an NDN node (router or
producer) needs to forward a content object larger than
oMT U . Each resulting fragment CFNv,s includes: (1) s bits
of original content – bv,s, (2) starting offset v, and (3) ISv
– intermediate state, i.e., output of h(·) on inputs of IV
and b0,v−1.9 (ISv = h(IV, b0,v−1).) To simplify presentation,
Algorithm 1 makes two assumptions: First, aoMT U is a
multiple of β, i.e., aoMT U = s ∗ β. Second, N (signed
content size) is a multiple of aoMT U , i.e., N = k∗aoMT U ,
which makes all fragments of equal size.

Algorithm 1 Fragment-Content
1: Input: signed content CON

= b0,N−1, aoMT U , IV , h(·)
2: Output: F
3: F := ∅, v = 0, ISv = IV
4: s = aoMT U/β, k = N/s
5: for i = 0, i < k, i+ + do
6: CFN

v,s := 〈 v, bv,s, ISv〉
7: F := F ∪ CFN

v,s

8: ISv := h(ISv, bv,s)
9: v = v + s

10: end for
11: Output F

2) Fragment Re-fragmentation: This task is very similar
to the initial fragmentation task, except that it is performed
only by NDN routers, and on content fragments, instead of
content objects.

3) Content Verification: As mentioned earlier, FIGOA
provides integrity/authenticity for fragments received in any
order. Recall that a router or a consumer can unilaterally
decide whether to either: (1) incrementally verify integrity of
each fragment as it is received, or (2) defer overall verification
until all fragments are received. Regardless of the choice, a
router should forward each fragment in a cut-through fashion,
i.e., without waiting for others to arrive. Moreover, a node
receiving fragments should store them in a buffer until the
last fragment arrives and (final or overall) verification is
performed. (See Section V-E.)

When a router performing incremental fragment verifica-
tion receives CFNv,s, one of the following cases occurs:

1) CFNv,s is the very first received fragment. A new buffer
B is created to store CFNv,s. IS

∗
w = h(ISv, bv,s) is

computed and stored.
2) Neither previous CFNu,s (for v = u+ s) nor next CFNw,s

(for w = v+s) fragment is in the buffer. CFNv,s is placed

9In the very first fragment, v = 0 and ISv = IV .



in B. IS∗w = h(ISv, bv,s) is computed and stored.
3) CFNu,s is in the buffer (along with IS∗v ) but CFNw,s is not.

IS∗v must match ISv in CFNv,s. IS
∗
w = h(ISv, bv,s) is

computed and stored.
4) CFNw,s is in the buffer but CFNu,s is not. IS∗w =

h(ISv, bv,s) is computed and must match ISw from
CFNw,s.

5) Both CFNu,s and CFNw,s have already been received.
IS∗v must match ISv in CFNv,s IS

∗
w = h(ISv, bv,s) is

computed and must match ISw from CFNw,s

Once the last fragment is received, authenticity of the entire
content can be finally verified. If verification fails, the last
fragment is dropped, the PIT entry is flushed, and nothing is
cached. The same applies for any failed check in the 5 cases
above. This process is illustrated in more detail in Algorithm 2.
We assume that routers perform incremental verification of
fragments and verify reassembled content signature. If signa-
ture verification is not possible, routers must verify that the
reassembled content hash matches the original content hash
included in every fragment (see Section VI for details.)

Algorithm 2 Verify-Fragment
1: Input: received CFN

v,s, associated PIT entry e, h(·)
2: Output: no output
3: if is first(CFN

v,s) then
4: B := get new buffer();
5: end if
6: INSERT CFN

v,s in B
7: STORE IS∗w = h(ISv, bv,s)
8: if CFN

u,s ∈ B and IS∗v 6= ISv in CFN
v,s then

9: goto CleanUp
10: end if
11: if CFN

w,s ∈ B and IS∗w 6= ISw of CFN
w,s then

12: goto CleanUp
13: end if
14: if is not last(CFN

v,s) then
15: FORWARD CFN

v,s according to e
16: end if
17: if content complete() then
18: CO

N
:= assemble(B)

19: if verify sig(CON ) then
20: FORWARD CFN

v,s according to e
21: CACHE CON return
22: end if
23: end if
24: CleanUp: FLUSH B and e

D. Examples

We now describe FIGOA via two operational examples:
In the first example, consider a situation where CON has
two fragments: CFN0,s and CFNs,s, i.e. N = 2 × s. A router
R first receives CFN0,s. First, R invokes h(·) iteratively and
computes IS∗s = h(IV, b0,s). Then, it forwards CFn0,s out
on the interface(s) reflected in the corresponding PIT entry.
R creates a buffer for CO

N
where it records the fact that it

received the first s bits of content, along with the computed
IS∗s . Now, R receives CFNs,s. It compares the stored IS∗s value
with ISs carried in CFNs,s. If they do not match, R discards the
buffer and flushes the corresponding PIT entry. Otherwise, it
invokes h(·) iteratively and computes IS∗N = h(ISs, bs,s). At
the end, before the content is cached and the last fragment is
forwarded, R extracts SIG(COn) from the received content,
and computes a putative hash H ′ of the entire reassembled
COn. Finally, R verifies whether SIG(COn) is the producer’s
signature on H ′. If so, CFNs,s is forwarded; otherwise, it is

...

...

Fig. 4. Implementing Merkle-Damgård Construction to Generate Content
Fragments

discarded along with the buffer and the PIT entry. A similar
process takes place if CFN0,s and CFNs,s arrive out of order.
R first receives CFNs,s. Using ISs carried in this fragment, R
invokes h(·) iteratively on each block of data and terminates
with IS∗N . Next, R forwards CFNs,s. Then, R creates a buffer
for CO

N
where it records the fact that it received the last

N − s bits (which is in fact the last s bits) of content, along
with ISs and IS∗N . Now, R receives CFN0,s. It invokes h(·)
iteratively and computes IS∗s = h(IV, b0,s) which should
match ISs received earlier as part of CFNs,s: if they do not
match, R discards the buffer and the PIT entry. Otherwise,
R computes a putative hash H ′ of entire reassembled COn,
extracts SIG(COn) and verifies whether it is the producer’s
signature on H ′. If so, CFN0,s is forwarded; otherwise, it
is discarded along with the buffer and the PIT entry. The
second operational example involves R receiving a fragment
CFNx,s of content CO

N
. The total size of this fragment is

(s+ hs) bits. Suppose that, after processing this fragment as
in the first example, R needs to forward it out on an interface
with oMT U smaller than the total size of CFNx,s, e.g., R
needs to re-fragment it into two sub-fragments. R creates
CFNx,s′ with ISx and CFNy,s′ with ISy; where (1) s′ < s,
(2) y = x + s′, (3) ISx is simply copied from CFNx,s, and
(4) ISy = h(ISx, bx,s′). This example aims to show that
R can easily re-fragment already-fragmented content while
preserving overall content integrity.

Figure 4 demonstrates how to use any hash function
based on the Merkle-Damgård construction to generate content
fragments. The hash function used in Figure 4 is SHA-256,
and the length of input is discarded at the end of construction
to simplify demonstration.

E. Content Authentication

Although trust and key management are out of the scope
of this paper, we cannot ignore the fact that authenticating a
content object requires not only the presence of a signature,
but also availability of a public key which must somehow
be trusted [14]. Recall that NDN stipulates that public keys
are encapsulated in named and signed content objects, i.e.,
a form of a certificate. Also, NDN allows the public key to
be either: (1) referred to by name within a content object
header, or (2) enclosed with the content object itself, using
the KeyLocator field. In the former case, unless the referred
public key is already cached, the router presumably must fetch
it by name, i.e., issue an interest for it. This is a burdensome
task that routers should not perform, for obvious reasons.



F. Security Analysis

Security of FIGOA is based on that of delayed authentica-
tion (DA). We say that H(·) is constructed using the Merkle-
Damgård construction with h(·) as the building block. If h(·)
is collision-resistant, then so is H(·).

A function F is collision-resistant if it is “computationally
infeasible” to find inputs x 6= y such that F (x) = F (y). See
[23] for information regarding Merkle-Damgård construction
and hash-and-sign paradigm.

A signature computed via hash-and-sign over an unfrag-
mented content object is considered secure. Whereas, with
DA, a content object is fragmented and we arrive at the
final hash of the content packet by incrementally hashing
its fragments. To subvert DA we consider an adversary who
is given a valid CO

N
with signature SIG(COn). The goal

of the adversary is to send to some router R a sequence
of fragments, CF ′N

′

x0=0,s, CF
′N ′
x1,s, . . . , CF

′N ′
xk,s

(xi+1 = xi +

s, 0 ≤ i ≤ k − 1) corresponding to CO′
N ′ 6= CO

N
with

H(CO′
xk) = H(COn). Assuming a secure DA scheme,

the probability of constructing such a fragment sequence is
negligible. This is formally proven in [13].

VI. IMPLEMENTATION

Our implementation performs fragmentation with cut-
through switching and intermediate reassembly. It is consistent
and compatible with the CCNx 0.8.2 code base, with no
changes to the architecture except to support fragmentation.
Modifications are confined to the CCNx forwarder code.

To implement fragmentation, we introduce a new type of
NDN packet, ContentFragment(Figure 5 shows the format
of this new type). It is used for both initial fragmentation of
content objects and re-fragmentation of content fragments.

• Name: identical to content name
• ContentObjectSize: size of original content object before frag-

mentation
• InternalState: internal state of SHA-256 computation up to
PayloadOffset of the content

• PayloadOffset: where fragmented data begins with respect to the
unsigned content

• PayloadSize: size of fragment payload – a multiple of 512-bits, except
for the last fragment

• ContentDigest: digest of the original content object. Appending this
digest to Name, forms the content’s unique name. This field allows routers
to match fragments with interests (in PIT). For routers not verifying content
signatures, this field must match the hash computed after reassembling the
content.

• Payload: actual content fragment

Fig. 5. ContentFragment format specification.

Once all fragments are received and the content is reassem-
bled, the router caches it if its integrity is verified.

The above format lends itself to natural re-fragmentation.
If a ContentFragment requires further fragmentation,
only InternalState, PayloadOffset, PayloadSize, and
Payload need to be adjusted to reflect the new fragments.
This prevents nested fragments and simplifies reassembly,
which increases router performance and reduces end-to-end
latency.

To evaluate the implementation, we compared its perfor-
mance to an unmodified version of CCNx 0.8.2. This version
runs as an overlay atop TCP or UDP (similar to the current
NDN testbed). With TCP, content larger than the negotiated

MTU (at connection setup) is segmented by TCP. This reduces
the chance of IP fragmentation, unless the MTU is lower at an
intermediate router. With UDP, IP is responsible for content
fragmentation and reassembly. In this case, every CCNx node
receives the whole content object from the UDP socket after
reassembly is performed by IP. We use UDP as a transport
layer protocol in the experiments.

VII. EVALUATION

We employ a server equipped with 8-core Intel i7-3770
CPU at 3.40GHz and 16GB of RAM. It runs Ubuntu 12.10
and KVM hypervisor. We construct a testbed by provisioning
virtual machines to act as CCNx nodes interconnected on
the same LAN and NAT-ed by the host server. Each node
is connected to a virtual Ethernet interface at 100Mbps, with
MTU set to 1500 bytes.

Experiments are run on a 3-, 4-, and 5-node linear topol-
ogy. The first hop acts as consumer sending interests for
specific content published by the last hop – the producer. For
each topology, the consumer requests content of size: 1, 2,
4, 8, 16, and 32 KB. We chose linear topology since content
objects and fragments thereof always traverse the same path,
in reverse, of preceding interests.

Results in Figure 6 demonstrate the average consumer end-
to-end latency measured from many repeated experiments.10

For all settings, IP performs consistently better than our cut-
through approach. The bottleneck of FIGOA is that routers
need to perform additional processing to compute the hash of
every fragment. Since all computation is currently performed
in software, these results make sense. However, we believe
that if NDN/CCNx is deployed as a network layer, hash
computation would be performed in hardware, with much
better performance.

We run another 3-node experiment that involves re-
fragmenting fragments. We measure end-to-end latency at the
consumer for different values of intermediate router’s MTU:
1,500, 1,100, and 700 bytes. The consumer requests content
of size 4KB. In case of MTU=1,500, content is fragmented
at the producer into 4 fragments, with each, except last,
of 1,152 bytes11 of payload plus fragment header length.
However, when MTU drops to 1,100, payload length of each
outgoing drops to 768 bytes, leading to re-fragmentation of
each fragment into 2 smaller ones. Similarly, each fragment
is re-fragmented into 3 smaller fragments when MTU drops
to 700.

Results in Figure 7 indicate that, as MTU decreases, end-
to-end latency increases for fixed content size. This makes
sense, since smaller MTU leads to more processing due
to re-fragmentation. Although re-fragmentation using FIGOA
requires additional hash computations at each hop after the
point where re-fragmentation occurs12, the ratio of NDN end-
to-end latency to IP end-to-end latency does not increase
dramatically. This is because, when fragmentation occurs in
IP, reassembling content is required at every hop before it
is delivered by the UDP socket to NDN. Since the same
does not hold with FIGOA, IP reassembly adds more end-to-
end latency that compensates for additional hash computation
overhead imposed by FIGOA.13

10All nodes start with an empty cache at the beginning of each experiment.
11Multiple of SHA-256 block size which is 64 bytes.
12Recall that IP re-fragmentation does not required hash computation.
13Refer to Section IV-C for more details about delay imposed by IP

reassembly at each hop.
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Fig. 6. End-to-end latency for retrieval of various sizes of content. IP represents the unmodified version of CCNx and NDN represents FIGOA. Values above
bars represent the difference between NDN and IP fragmentation (NDN / IP).
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Fig. 7. End-to-end latency of various MTU-s at intermediate routers for
content size 4KB. IP represents the unmodified version of CCNx and NDN
represents FIGOA. Values above bars represent the difference between NDN
and IP fragmentation (NDN/IP).

VIII. RELATED WORK

The first attempt to address security in IP fragmentation
is [33] which considered the specific problem of how to
authenticate fragmented IP packets in egress and ingress
routers of stub AS-s. A source host is assumed to share
a key with the appropriate router(s). Two techniques are
proposed: The first one is delayed authentication (DA) where
an authenticating router verifies a packet MAC incrementally
from its fragments. Since fragments of the same packet might
flow through different routers, to prevent reassembly of a
corrupted packet at the destination, an authenticating router
holds one small fragment “hostage” until authenticity of the
entire packet authenticity is confirmed. The second scheme
is an MTU probe mechanism that a source host can use
to pre-segment a large packet into smaller authentic packets
sized to the smallest MTU on the (current) path. Some
extensions to [33] were later proposed in [27]: extended
delayed authentication (EDA) requires fragments to traverse
the same path. [27] also provides a detailed comparison of
few secure fragmentation techniques. [26] presents a secure
fragmentation scheme for Delay-Tolerant Networks (DTN)
[8]. This scheme is referred to as “toilet-paper” approach to
securing fragments, and was further enhanced in [3]. The
basic idea is that, prior to bundling, data is checkpointed
into fragments using cryptographic hash at specified intervals.

Hashes are included in a bundle and authenticated with a
signature. Given a fragment, the hash, and the signature, a
gateway can authorize whether fragmented data should be
delivered over the link.

After bundle fragmentation occurs, the sender builds a hash
tree and only signs the root node. Fragment verification re-
quires knowledge of this signature and log(n) hashes (where n
is the number of fragments). To authenticate all fragments, the
verifier computes n log(n) hashes and verifies one signature;
instead of n hashes and n signature verifications. However,
these approaches are not applicable in NDN since they do
not support in-network fragmentation. Moreover, as described
earlier, authentication of all fragments in FIGOA requires the
computation of only n hashes and one signature verification.

Currently, IPSec [12] is the most common approach for
network-level authentication in IP networks. IPSec is compati-
ble with both IPv4 and IPv6. It operates in transport and tunnel
mode. In IPv4, regardless of the mode, packet fragmentation
between IPSec-enabled hosts (gateways) can still occur. Since
IPSec authenticated/encrypted packets have a destination ad-
dress of another IPSec-capable host (or gateway), packet-level
security requires reassembly.

Fragmentation in existing ICN architecture is far less per-
vasive. The current NDN implementation supports TCP/UDP
tunnels to interconnect forwarders. Fragmentation is relegated
to IP, and the packet size is limited to that of IP. Routers
can authenticate content by reassembling all fragments. This,
however, dramatically decreases the performance core network
routers. NDNLP [32] is a link layer protocol for NDN that
support fragmentation and reassembly of NDN packets (in-
terests and contents) which sizes is greater than link MTU.
Once an NDN packet is fragmented, all fragments carry a
sequence number and their index in the corresponding original
packet. However, since received content by routers needs to
be verified and cached, NDNLP requires reassembly at each
hop. Moreover, NDNLP uses an incompatible packet format
to support cut-through fragmentation resulting in extra delay.

The CCN-lite project [5] aims to provide a “level-0”
forwarder for CCN. It is compatible with the CCNx protocol
and provides a rudimentary implementation of the forwarder
with simple data structures for PIT, FIB, and CS. Native
fragmentation and reassembly is supported over Ethernet
and TCP/UDP. Fragments are identified by sequence number
without any addressing scheme. Therefore, cut-through frag-



mentation is not supported. The fragmentation scheme also
provides optional support for reliable fragments transmission.

CONET [11] is a derivative of CCNx. Also, in [29], a
transport scheme called ICN Transport Protocol (ICTP) is
specified, which implements TCP native to ICN. Similar to
TCP, ICTP segments data to avoid further fragmentation. In
essence, this provides cut-through delivery of fragments, but
doesn’t prevent lower-layer intermediate fragmentation.

The NetInf project [9] is an emerging ICN architecture
that supports location-independent named data objects (NDO)
– similar to content objects in NDN/CCNx. NDOs are signed
and cacheable units. NetInf does not specify a scheme for
segmentation and relies on a “convergence layer” (CL) to
synthesize necessary services for heterogeneous transports
used to connect NetInf gateways. The CL is responsible for
the fragmentation and reassembly of NDOs. With no native
fragmentation and reassembly scheme, NetInf appears to rely
on per-hop reassembly scheme for NDO authenticity.

IX. CONCLUSION

Secure fragmentation is an important issue in NDN. It
is complicated by the rule that each content object must be
signed by its producer. Thus far, fragmentation of content
objects has been considered incompatible with NDN since it
precludes authentication of individual fragments by routers.
In this paper, we showed that secure and efficient content
fragmentation is both possible and advantageous in NDN
and similar architectures that involve signed content. We
demonstrated a concrete technique (FIGOA) that facilitates
efficient and secure content fragmentation in NDN, discussed
its security features and assessed its performance. Finally, we
described a prototype implementation and presented prelimi-
nary results.
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