
Mitigating On-Path Adversaries
in Content-Centric Networks

Cesar Ghali, Gene Tsudik, Christopher A. Wood
Computer Science Department
University of California Irvine

Irvine, CA 92697
Email: {cghali, gene.tsudik, woodc1}@uci.edu

Abstract—Content-Centric Networking (CCN) is a recently
proposed Internet paradigm that focuses on scalable, secure and
efficient content distribution. The main abstraction is named and
addressable content. A consumer requests desired named content
by generating a so-called interest, which is then routed by the
network towards an in-network cached copy, or the authoritative
producer, of that content. Since all CCN content must be signed
by its producer, consumers and routers can cryptographically
verify its correctness, authenticity, and integrity. Thus, in prin-
ciple, attacks that introduce fake (poisoned) content can be
detected. However, verifying content signatures is optional for
CCN routers, detection of fake content only implies presence of
a malicious upstream entity. A major outstanding problem in
CCN is how to react to such attacks, determine their source(s),
and re-route interests accordingly.

In this work, we construct a technique based on efficient
per-hop packet integrity checks. Routers share secrets with
neighboring routers and use them to verify and generate efficient
per-hop packet authenticators. An on-path attacker that tampers
with content in transit is quickly detected by downstream routers.
Moreover, an on-path attacker that hijacks a namespace is discov-
erable. Our experimental assessment indicates that the proposed
technique incurs very low per-packet overhead. Furthermore,
since our approach is not CCN-specific, it can be applied to
IP-based networks as well.

Index Terms—Content-Centric Networking, on-path attackers,
packet integrity, adversary leap frog

I. INTRODUCTION

Opportunistic in-network caching is a core feature of
Information-Centric Networking (ICN) architectures, such as
Content-Centric Networking (CCN) [1] and Named-Data Net-
working (NDN) [2]. In these architectures, routers are (op-
tionally) equipped with caches that temporarily store recently
forwarded content objects. These cached copies can satisfy
future requests (called “interests”) for the same content, thus
reducing end-to-end latency and decreasing overall utilized
network bandwidth.

Each content is cryptographically bound to its name, in
most cases, via a digital signature generated by that content’s
producer. Consumers must, and routers can, verify these
signatures to ensure they receive the correct content. Routers
are only required to verify content before serving it from a
cache [1]. This is done to prevent so-called content poisoning
attacks, wherein the adversary Adv injects fake content, i.e.,
content with an invalid signature, into the network. Content
poisoning is not a new threat; it was first identified in [3].
Subsequently, Ghali et. al proposed a means to mitigate it

in [4] and [5]. One comprehensive counter-measure is the
Interest-Key Binding (IKB) rule, which reduces the problem
of content poisoning to that of network-layer trust [5]. IKB
requires consumers and producers to collaborate in order to
provide routers with enough trust information about requested
content to allow them to detect poisoned content.

However, even with today’s networking technology, per-
forming a single signature verification per content is not aways
practical at line speed [5]. Moreover, not every router would
cache and verify each content. In the presence of an on-path
attacker that hijacks a prefix or simply modifies content in
transit, poisoned content would not be discovered until it gets
close to the consumer.

The only way around an on-path attacker is to bypass it by
adjusting routers’ forwarding information. However, without
knowledge of the attack origin or network topology, such
adjustments might be erroneous or suboptimal due to being
done very far away from the actual adversary. To aid routers
in making informed forwarding adjustments, DiBenedetto
et al. [6] proposed an adaptive forwarding strategy based
on consumer-provided content “complaints.” Specifically, a
consumer that detects poisoned content informs upstream
routers about said content and provides them with information
needed to check its validity. A router verifies such downstream
complaints and adjusts its forwarding strategy to avoid the path
that contains the attacker. These complaints are recursively for-
warded upstream so that every router can adjust its forwarding
table. Despite its seeming simplicity, this approach has several
undesirable features:

• Complaint messages are a form of computational DoS
on routers, due to cryptographic operations needed to
validate them. If complaint messages are not protected,
another type of DoS would occur since the attacker could
generate spurious complaints.

• Complaint messages can be very large, as they encompass
referenced fake content and all information needed to
authenticate it. This translates into communication DoS
on routers.

• Routers are forced to update routes even though immedi-
ate upstream routers (which provided content) may not be
malicious. This can lead to suboptimal route selection that
harms downstream routers. For example, a router could
unnecessarily switch to a more expensive link.

More importantly, [6] proposes an application-layer remedy
to a network-layer problem. Clearly, on-path attackers are not
unique to ICN. They may occur in IP networks under the guise
of transit routers that modify transit packets’ payloads, or drop
packets altogether. Therefore, we believe that on-path attackers
must be dealt with at the network layer. In other words, while
content authenticity is strictly an end-to-end issue, content
retrieval, i.e., via avoidance of on-path attackers, is a network-
layer concern.

In this paper we reconcile content authenticity and retrieval
with an efficient per-hop content integrity check. The main
idea is to allow routers to detect when upstream peers have
modified a content packet. Intended contributions of this work
are:

1) A novel “adversary leap frog” scheme that uses cryp-
tographic MACs to ascertain authenticity of upstream
content packets.

2) A merge of IKB with the above scheme to enable in-
network content authenticity and secure content retrieval.

3) A security analysis and experimental assessment of the
proposed scheme to show its utility and practicality.

The rest of the paper is organized as follows: Section II
presents an overview of CCN. Next, Section III describes
content poisoning and the difficulty of its mitigation. The on-
path attacker threat model is described in Section IV. Our
approach is then detailed in Section IV. Then, security analysis
and experimental assessment are presented in Sections VI and
VII, respectively. The paper concludes with a summary of
related work and future directions, in Sections IX and X.

II. CCN OVERVIEW

CCN [1, 7] is a network architecture based on named
content. Rather than addressing content by its location, CCN
refers to it by a human-readable name, which is composed of
one or more variable-length components that are opaque to
the network. Component boundaries are explicitly delimited
by “/” in the usual UNIX path representation. For example,
the name of a BBC news content for April 1, 2017 might
look like: /bbc/news/2017april01. Since CCN’s main
abstraction is content, there is no means to directly address
“nodes” (interfaces, hosts and routers), although their existence
is assumed.

In CCN, content is only delivered to consumers upon ex-
plicit request, called an interest. A CCN router never forwards
a content unless it is preceded by an interest requesting that
content. If a content is received without prior interest, it is
considered unsolicited and is dropped. Consumers request
content with name N by sending an interest with the same
name. A content named N 0 is considered a match for – and
therefore can be sent in response to – an interest for N if and
only if N = N 0. In other words, content name matching in
CCN is exact.

There are three types of CCN entities1: (1) consumer – an
entity that issues an interest for content, (2) producer – an
entity that produces and publishes (as well as signs) content,

1Note that a physical entity (a host, in today’s parlance) can be both
consumer and producer of content.

and (3) router – an entity that routes interest packets and
forwards corresponding content packets. Each entity (not just
routers) maintains the following two components [1]:

• Forwarding Interest Base (FIB) – routing table of name
prefixes and corresponding outgoing interfaces (to route
interests).

• Pending Interest Table (PIT) – table of currently not-yet-
satisfied (pending) interests and a set of corresponding
incoming interfaces.

An entity may also have a Content Store (CS) – a cache used
to temporarily store content. (From here on, we use the terms
CS and cache interchangeably). Unlike the PIT and FIB, a
cache is optional.

When a router receives an interest for name N , and there
are no pending interests for a matching name in its PIT, it
forwards the interest to the next hop(s), according to its FIB.
For each forwarded interest, a router stores some amount of
state information, including the name in the interest and the
interface on which it arrived. However, if an interest for N
arrives while there is already an entry for the same content
name in the PIT, the router collapses the present interest (and
any subsequent ones for N) and stores only the interface on
which it was received. When content is returned, the router
forwards it out on all interfaces on which an interest for N
has arrived and flushes the corresponding PIT entry. Since no
additional information is needed to deliver content, an interest
does not carry a “source address”.

A CCN content packet includes several fields. Beyond the
name field, we are only concerned with the Validation
field. This contains the content verification algorithm details
and a public key signature generated by the content producer.
The latter covers the entire content, including all explicit
components of the name and a reference to the public key
needed to verify it.

A CCN interest packet has the following fields:
• Name – CCN name of requested content.
• ContentObjectHashRestriction (ContentId) –

cryptographic hash digest of requested content.
• KeyIdRestriction (KeyId)– cryptographic hash di-

gest of the public key used to verify requested content.
If an interest specifies a KeyId then it must match the crypto-
graphic hash digest of the public key in the corresponding
content object. If an interest specifies a ContentId then it
must match the cryptographic hash digest of the entire content
object (modulo packet headers). These are considered restric-
tions, since they limit the scope of acceptable content object
responses to an interest. Finally, we note that an interest which
carries a ContentId is said to have a “self-certifying name.”

III. CONTENT POISONING AND NAMESPACE ARBITRATION

Content poisoning is an attack on content retrieval that
prevents consumers from obtaining valid (authentic) data. This
attack comes in two flavors: proactive and reactive, as defined
in [3]. In this paper, we focus on the latter and use the term
content poisoning stricly in that context.

Reactive content poisoning attacks occur when an on-path
Adv injects fake content objects into the network. A fake con-

RR
i-1Cr

i
R Pi+1

Fig. 1. An on-path content poisoning attack.

RR
i-1Cr Pi

Fig. 2. An on-path content generation attack.

tent object is one that has an invalid or malformed signature, or
a valid signature generated with the wrong key. Consumers can
easily identify fake content by verifying content signatures.
Not all routers, however, can easily do so, since verifying
content signatures at line speed can be too computationally
expensive. Thus, since not all routers verify content signatures,
Adv can inject content that percolates through the network
until some entity verifies its. When a downstream router or
a consumer detects fake content, it only learns that some
upstream router or a producer tampered with that content. The
verifying entity has no insight into where the attack occurred.

Consider a path of legth n with intermediate routers Ri�1,
Ri, and Ri+1, between a consumer Cr and producer P shown
in Figure 1. Downstream arrows indicate the flow of content
from P to Cr. Adv is an on-path attacker that modifies this
content in transit. Upon authenticating content, any router Rj ,
j 2 [1, i�1], only learns that either some router Rk, k 2 [j+
1, n] or P provided the fake content. Adv can attack in two
ways: (1) by modifying content packets in transit, or (2) by
responding with fake content. We refer to them, respectively,
as on-path modification and on-path generation attacks. They
are shown in Figures 1 and 2. Detecting on-path attacks by an
intermediate router is equivalent to checking content integrity
and authenticity as content flows through the network.

To obviate the need for signature verification in the fast
path, [6] proposed a reactive technique to correct network
behavior when attacks are detected. This proposal is premised
on the argument that undetected modification and generation
attacks result from producers publishing under unauthorized
namespaces. This is addressed by requiring the consumer to
report fake content to routers that verify these reports and
forward them upstream, if necessary. Routers then greedily
find an alternate path to the valid content, by either: choosing
a different forwarding interface for the content, or probing
all interfaces until valid content is returned. Although this
mitigation strategy works in theory, it has certain drawbacks
discussed in Section I.

Moreover, the approach of [6] is based on the dubious as-
sumption that namespace ownership is proven by content pub-
lished under that namespace. This means that any application
can publish under any namespace provided that it possess the
public key that a consumer trusts. However, there is nothing
stopping multiple applications from claiming ownership of the

same namespace. To see why this is problematic, consider
two applications: A1 and A2 that both claim ownership over
namespace N = /a/b, i.e., both advertise themselves as
producers under N . Moreover, neither one is malicious. Since
each application has its own key-pair, data produced by A1

and A2 is signed and then verified with different public keys.
Now assume that consumer Cr wishes to obtain content:
/a/b/x from A1 using KeyID K1. Cr issues an interest and
provides K1’s ID. However, if A2 is closer to Cr than A1,
A2 would produce content signed by K2, not K1. Therefore,
all on-path routers as well as Cr would deem the data invalid.
However, whether it is invalid depends on who has proper
ownership over N . Clearly, this problem occurs since the
network allows both applications to advertise under N without
verifying ownership.

Without a namespace arbitration mechanism, this problem
is unavoidable. Thus, we conclude that a node can not just uni-
laterally advertise under any namespace it wants. There must
exist some globally trusted authority that manages namespace
ownership. This authority can help prove ownership of a
namespace. This way, namespace ownership can be ascer-
tained before routes are injected into the network. As a result,
any after-the-fact content modification or generation attack
would stem from failure to check packet authenticity and
integrity in the fast path. Addressing this problem would thus
mitigate on-path attackers.

IV. THREAT MODEL

We now outline our system and threat model. We assume
a network composed of routers, producers, and consumers.
Routers forward interest and content packets between con-
sumers and producers. Routers have identities (for network
management purposes) and can learn identities of nearby
peers in the network. Also, routers may be organized into
autonomous systems (ASes). Routers are added to the network
in a controlled and secure fashion.

Each namespace is owned by an application (or identity)
and is served by at least one producer on behalf of the
application. Each namespace is also associated with a unique
public-private key-pair. It is possible for multiple producers to
serve the same namespace. In this case, they would all belong
to the same application. Lastly, there exists a globally trusted
authority responsible for managing namespace ownership. It
may be implemented as a centralized arbiter similar to IANA,
a decentralized system such as DNS, or a distributed system
such as Namecoin [8]. For simplicity, we assume that the
authority is a key-value store which maps namespaces to the
corresponding public key or an empty string (if no application
owns the namespace). Moreover, we assume that the authority
is queried before producers are allowed to inject namespace
prefixes into the routing protocol.

As mentioned earlier, we assume a general on-path ad-
versary Adv that can compromise a polynomial number of
routers (up to k) and any producer. Adv has complete control
over each compromised entity. In particular, it controls the
content and timing of messages generated and processed by
such entities. Adv can also spawn authenticated nodes under

its control on demand. This capability can be used to modify
packets or generate fake content. Security against Adv means
that it is infeasible for Adv to perform these actions without
detection. Once Adv is detected, honest entities can take action
to bypass it.

V. INTEGRITY ZONES

As mentioned above, on-path attacks are possible because
there is no efficient means for routers to verify packet in-
tegrity and origin authenticity on the fast path. Meanwhile,
application-driven solutions (e.g., [6]) have some prominent
drawbacks. We believe that this problem should be addressed
at the network-layer. With respect to integrity, hop-by-hop
packet mechanisms are insufficient since Adv can compromise
individual routers. At the same time, end-to-end integrity
mechanisms are infeasible since “ends” are undefined: one
end could be the producer or an intermediate router’s cache.
Ideally, we need something between these two extremes.
For origin authenticity, digital signatures are insufficient for
identifying the origin of fake content. A router should be able
to learn if a packet was generated by a producer who owns the
corresponding namespace. This is not the same as verifying
that the packet is authentic, since the verifying public key need
not be the same as the namespace ownership key.

Our approach relies on integrity zones, which work as
follows: Every router shares (and rotates) a unique key with
every router that is k � 2 hops away. These keys are used to
generate and verify packet MACs to ensure packet integrity in
transit. Upon receipt of a content packet, a router verifies at
most k MAC tags and, if all are valid, replaces them with k
new MAC tags generated locally. Upon receipt of an interest
packet, a router simply appends its ID to the packet. If the
number of downstream IDs exceeds k, it also drops the oldest
one. In effect, the MAC tags and router IDs form a sliding
window of size k that moves as packets propagate through the
network. If Adv compromises at least k contiguous routers, the
system fails.

Integrity zones require knowledge of the distance to the
content producer, which can be provided by a secure distance-
vector routing protocol, such as DCR [9]. This is needed so
that routers can check if content was really generated by the
appropriate producer. When generating content in response to
an interest (which carries identities of the k previous hops
through which the packet flows) the producer computes and
includes k MACs using the keys associated with these k
routers. Each downstream router then validates the producer-
generated MAC before including its own MAC, as described
above. Also, the i-th downstream router, where i k, must
check that there are at least i valid MACs in the content packet.
This ensures that the original MACs were not generated by an
on-path Adv that hijacked a namespace.

Integrity zones allow routers to play “adversary leap frog.”
In other words, when less than k contiguous nodes are
compromised, a router can always learn exactly which router
is malicious and can take steps to remedy the situation in the
forwarding plane. Inspired by [10], the crux of the proposed
technique is for routers to verify each content packet as it is

iR RR i+1i-1C P

Fig. 3. Adv controlling intermediate router. Blue arrow shows dependency
between R

i�1 that detects a problem and R
i+1 that does not. k = 2.

routed through the network. Consider the following example,
where:

path = R1, R2, R3, . . . , Rn�2, Rn�1, Rn

is a path between some Cr and P . Moreover, assume that Cr
previously issued an interest for P that resulted in a content
C being forwarded along the reverse of path. Now, suppose
that Adv controls Ri 2 path, and modifies either the content
packet or its signature. This means that Ri+1 sees a valid
content packet while Ri�1 does not. The goal is for Ri�1 to
learn that Ri is misbehaving. Ideally, Ri+1 computes a content
MAC using a key shared with Ri�1. Then, Ri�1 fails to verify
this MAC and learns that Ri is malicious. This flow is shown
in Figure 3. The network can then attempt to avoid Ri for
all interests and heal itself without requiring any consumer
involvement.

To summarize, within a given integrity zone, each router is
responsible for: (a) appending its identifier to each interest, (b)
verifying and removing k MACs of each content packet, and
(c) computing k MACs and appending them to each content
packet. Thus, every router performs 2k MAC operations.
(See Section VII.) Below, we discuss this approach in detail,
including: (1) how those routers obtain shared keys, (2) why
producer (anchor) distances are required, (3) packet formats
and processing logic, and (4) network recovery steps.

1) Leap-Frog Key Distribution: Each router shares a key
with every router k � 2 hops away. Depending on the network
ecosystem, these keys may be pre-shared between routers,
i.e., within a single AS. Otherwise, keys must be established
using a key exchange protocol. One potential obstacle is that
such protocols require some form of a PKI to ascertain each
peer’s identity. However, this is not a show-stopper, since most
networks are managed and contain routers controlled by the
same administration. We therefore defer this bootstrapping
phase to future work.

2) Anchor Distances: Integrity zones allow a router to
prove that its k upstream routers did not modify a content
packet. However, if Adv hijacks a namespace there could be
< k MACs in a content packet. This is only possible if the
consumer-to-producer path has j < k hops. The packet would
then carry j MACs and each router on the path would know
this distance and expect the appropriate number of MACs.

There is one more edge-case: Let R be a benign router
j � 2 hops away from P . Suppose that Adv is adjacent to
R on the R ! P path. We assume that Adv attempts a data
generation attack. In doing so, it must provide k valid MACs
verifiable by k downstream routers, including R. Upon receipt
of the fake content packet, R can only verify one MAC – the

Fig. 4. Upstream MAC dependencies and downstream MAC generation.

Algorithm 1 ProcessInterest(k)

1: Input: I[N, IDs], F
in

, R
ID

2: if N in the PIT then
3: Add F

in

and IDs to the PIT entry with name N .
4: else
5: Append R

ID

to IDs to form IDs

0

6: Lookup F
out

in the FIB using N
7: Forward I[N, IDs

0] to F
out

8: end if

one generated by Adv. If R does not know that P is after
R on the path, R may incorrectly conclude that the content
packet is valid and forward it. However, if R knows that P
is j hops away, it knows to verify j MACs. R can therefore
immediately learn that an attack took place. Thus, security of
this scheme relies on accurate and secure anchor distances. We
assume the existence of a secure protocol that allows routers
to learn the minimum distance to a namespace anchor. This
should be feasible assuming a global namespace ownership
authority discussed earlier. However, we defer exploration of
this topic to future work.

3) Packet Formats and Processing: Each content packet
carries MACs needed to check validity of previous k hops
(see Figure 4). Also, each packet carries MACs necessary for
the i-th downstream router to verify previous k�i hops. Thus,
a content packet carries no more than k(k + 1)/2 MACs at
a time. MACs generated by each router are stored in a list.
Also, each MAC is associated with a symmetric key shared
between two routers. For example, a MAC generated by a
key shared by Ri and Rj with IDs i and j is �i,j . Each
MAC has an associated ID of the router that generated it,
denoted �i,j .ID. A router stores its shared keys in a table
called KeyTable. A key is fetched using the identifier, e.g.,
ki,j = KeyTable[�i,j .ID]. In S-expression notation, the set of
MAC lists stored in a packet header is represented as follows:

(T INTEGRITY ZONE

(T PACKET MACS [�i,i+1]

(T PACKET MACS [�i,i+1,�i,i+2])

. . .

(T PACKET MACS [�i,i+1,�i,i+2, . . . ,�i,i+k])

)

When a router processes a content packet it deletes at most
k MACs since they are useless to downstream routers. This
procedure is detailed in Algorithm 2. (Changes from standard
CCN are underlined.) Processing an interest is much easier: a
router simply injects its own identifier in the interest header
and forwards it, if necessary. This is detailed in Algorithm 1.
(Changes from standard CCN are underlined.)

Currently, all MACs must fit in the per-hop header of
the content packet. However, the current CCN packet format
restricts this header to a maximum size of 256 bytes. Assuming

Algorithm 2 ProcessContent(k)

1: Input: C[MACs, D, V],
2: Output: C[MACs

0, D, V], F
out

3: for l
i

in MACs do
4: � := l

i

.pop()
5: k

ID

:= KeyTable[�.ID]
6: if � 6= MAC(k

ID

, D||V) then
7: Drop C and flag upstream router as malicious
8: end if
9: end for

10: Drop first MAC for each l
i

in MACs

11: Entry := PIT.Lookup(C)
12: if |MACs| < Entry.d then
13: Drop C and flag upstream router as malicious
14: end if
15: l

R

= []
16: for ID in Entry.IDs do
17: k

ID

:= KeyTable[ID]
18: l

R

.Append(MAC(k
ID

, D||V)
19: end for
20: C0 := C.MACs.Append(l

R

)
21: return C0, Entry.F

out

a MAC of 128 bits, or 16 bytes, each packet can support a
radius of at most k = 4.2 This a reasonable restriction, since
it requires Adv to compromise k � 4 contiguous routers to
subvert integrity zones.

4) MAC Compression: Packet format described in the pre-
vious section requires all MACs to be listed separately in each
content packet. The resulting overhead is O(k2) MACs per
packet. To lower it, MACs can be compressed. Consider the
verification process at each hop. Each router verifies k MACs
individually and detects an attack if at most one fails. These
k MACs could be aggregated into a single MAC. Each router
could then verify an aggregate. With this format, the packet
header would only need to carry a list of k aggregate MACs
and list of k upstream router IDs, as shown below:

(T INTEGRITY ZONE

(T ROUTER IDS [IDi+1, IDi+2, . . . , IDi+k]

(T PACKET MACS [�i+1,�i+2, . . . ,�i+k])

)

With this format, each packet is processed as shown in
Algorithm 3. This variant also modifies per-hop headers in
place, which is far more efficient.

5) Recovery: When a Ri detects that only one of its
upstream neighbors Rj , j > i tampered with a content packet,
it concludes that Ri+1 is also malicious. This is because, if
Ri+1 were not malicious, it would have detected the attack by
Rj , j > i+1, and dropped the packet accordingly. Therefore,
Ri can remove all FIB entries that point to Ri+1. It does not
need to probe the network to find a next-best route. If there
are no longer any viable routes, Ri must generate interest
NACKs.

2This limit assumes there are no other per-hop headers, such as the interest
lifetime or recommended cache time. In practice, these headers are usually
present in packets, meaning that k < 4. However, given that the packet format
is flexible, we could easily extend the per-hop header capacity to accommodate
these new fields.

Algorithm 3 ProcessContentWithCompressedMACs(k)

1: Input: C[IDs,MACs, D, V],
2: Output: C[IDs

0,MACs

0, D, V], F
out

3: � = 0� {Empty string to start}
4: for i := 1, . . . , k do
5: k

ID

:= KeyTable[IDs[i]]
6: t = MAC(k

ID

, D||V)
7: � = � � t {Aggregate the MAC}
8: end for
9: if � 6= MACs[1] then

10: Drop C and flag upstream router as malicious
11: end if
12: Drop the first element of MACs and shift to the left
13: Entry := PIT.Lookup(C)
14: if |MACs| < Entry.d} then
15: Drop C and flag upstream router as malicious
16: end if
17: for i := 1, . . . , |Entry.IDs| do
18: k

ID

:= KeyTable[Entry.IDs[i]]
19: MACs[i] = MACs[i]� (MAC(k

ID

, D||V)
20: end for
21: return C, Entry.F

out

VI. SECURITY ANALYSIS

Security of our integrity zones scheme is premised on
whether Adv can compromise more than k contiguous routers.
If k = 2 and Adv compromises two contiguous routers, any
part of the packet can be modified without any downstream
router detecting the problem. However, if k is large enough
such that Adv can not succeed, then integrity zones protects
against generation and modification attacks. We argue this
below.

Claim 1: Assuming a MAC scheme secure against existen-
tial forgeries, and Adv that is unable to: (a) compromise k
contiguous routers along paths of length at least k routers,
or (b) compromise l contiguous routers along paths of length
l < k, and a distance-vector routing protocol that provides
correct anchor distances, the integrity zones scheme is secure
against content modification and generation attacks.

Proof: (Sketch) First, we show that modification attacks
are impossible. This follows from security properties of the
underlying MAC scheme. If c < k contiguous routers are
compromised and a packet is modified, then at least one MAC
tag in a downstream router would fail verification. This MAC
corresponds to the upstream router which is malicious.

Assuming a namespace ownership authority, a producer can
only advertise a namespace which it owns. Therefore, data
generation occurs when: (a) an on-path router maliciously
intercepts interests and responds with fake content, or (b)
the producer provides fake content. We address these cases
together since they differ only in the distance to the producer.
Assume that the distance to the producer for the fake content
from the verifying router is d. Also, suppose that a packet with
l MACs verifies correctly. There are three cases with respect
to l, k, and d: (1) l = k and d � k, (2) l = k and d < k,
and (3) l < k. (Note that l > k is not possible based on the
packet format.) In (1) and (2), R fails to detect the attack only
if a MAC was forged.3 Whereas, (3) only occurs if the packet

3A MAC forgery occurs when Adv generates a valid MAC without
knowledge of the secret key.

traverses a path shorter than k hops. Per our assumption, Adv
can not compromise routers along this path and thus an attack
can not occur.

We note that interests only carry router IDs and not MACs.
Tampering with this list by appending, removing, or changing
IDs would only cause downstream routers to fail verification.
This is because upstream routers would use wrong keys to
generate MACs.

As indicated above, one limitation of the integrity zone
scheme is with paths of length l < k routers. If Adv can
compromise all l routers, the scheme fails to detect the attack.

VII. EXPERIMENTAL ANALYSIS

We now assess the overhead of the integrity zones scheme.
From a performance perspective, overhead is incurred at every
hop. Specifically, the scheme involves at most 2k MAC oper-
ations: k verifications and k generations. Therefore, network
topology has no impact on per-packet overhead. Thus, our
assessment has two parts: (1) measuring efficiency of various
MAC schemes, and (2) measuring impact of integrity zones
on consumer latency.

A. MAC Overhead
Let m be a message of |m| blocks that serves as MAC

input and K be the corresponding key. There are many popular
MAC schemes, e.g.,: CMAC [11] and HMAC [12]. HMAC is
defined as follows:

HMAC(K,m) = H((K 0 � opad)||H((K 0 � ipad)||m)),

where opad and ipad are constants defined in the standard
and K 0 is a key derived from the master key K. CMAC, or
CBC-MAC, is defined (roughly) as follows:

B0 = AES(K,m0)

Bi = AES(K,Bi�1 �mi)

B|m| = AES(K,Bi�1 �mi �K 0
)

CMAC(K,m) = B|m|

where K 0 is a key derived from K and Bi is the i-th output
of encrypting m in CBC mode.

Both HMAC and CMAC require a complete pass over
m. The choice depends on what is available on the run-
time platform. In general, we view HMAC and CMAC as
approximately equivalent in terms of performance (in the
absence of AES acceleration). Figure 5 shows the performance
of HMAC as a function of message size. We see that overhead
reaches the millisecond mark when k approaches 6 and |m|
exceeds 4KB.

However, this can be improved with the following opti-
mization. Notice that both HMAC and CMAC process all
of m to produce a digest. Cryptographically, these functions
provide the equivalent security guarantees if a cryptographic
hash digest of m, i.e., H(m) for some pre-image resistant hash
function, is the input to MAC. Pre-image resistance stipulates
that it must be infeasible to find another message m0 such that
H(m) = H(m0

), i.e., forgery remains infeasible. With this in
mind, our optimization works by first computing H(m) and

Fig. 5. HMAC overhead as a function of message size and k.

Fig. 6. Hashed HMAC processing time as a function of the message size
and k.

using that as input to each MAC operation. Figure 6 shows
this optimization as a function of message size and k. (We use
SHA-256 as H(·), given its widespread use in CCN.) Results
indicate a significant reduction in processing time for nearly
all data points.

B. Network Impact
To assess impact on consumer latency, we modified the

ccns3Sim simulator [13, 14], based on ns3 [15], to support
our scheme. We then created a simple N -node path between
Cr and P . Every second, Cr issues an interest for a random
content produced by P . We measure end-to-end latency as
a function of N with k = 2, which includes per-packet
overhead induced by each router. Results are shown in Figure
7, which plots degradation, i.e., percentage latency increase
over standard CCN.

VIII. DISCUSSION

A. Scalability
The integrity zones scheme entails lightweight hop-by-

hop packet integrity checking that is both computation- and

Fig. 7. Perceived latency reduction due to per-packet integrity zones checks

bandwidth-efficient. However, it still incurs certain overhead.
Since each router must share a key with every router i =

2, . . . , k hops away, the number of keys can become quite
large. For example, suppose that R has 5 neighbors, each of
which has its own 5 (distinct) neighbors, excluding R. Then,
if k = 2, R would have to store 25 keys for each of these
routers. Thus, storage overhead is a function of k and network
topology. In a highly connected network where routers have
many neighbors, this may be prohibitive. However, in such a
scenario, it is far less likely for Adv to compromise all routers
i = 2, . . . , k hops away. Therefore, k can actually be lower.
When there are fewer path choices for a router, it pays to have
a larger k, since the Adv’s job becomes harder.

The per-packet overhead in each packet could be dealt with
by only generating and verifying MACs at AS boundaries.
This would require ASes to share keys with other ASes in the
network. This may be more plausible than individual routers
sharing keys since trust relationships at the AS level are
more controlled. Specifically, two AS operators can decide
whether or not to trust each other and, if so, allocate a key to
the corresponding gateways. Although this may simplify key
management, it makes the attack origin detection less accurate.
When MACs are verified and generated by individual routers,
i.e., not just gateways, a router learns precisely where the on-
path attack took place. At the AS level, a router (gateway)
only learns that an attack took place within an AS.

B. Global Zone Size
We assumed that k is a global constant. However, this

need not be the case. Indeed, k may be AS-specific. It is
the responsibility of a gateway between AS-s to bridge the
gap between different zones sizes. For example, suppose that
an interest is generated in AS D1 with k = k1. It traverses
a gateway G to another AS D2 with k = k2. G must share
keys with all of its neighbors at most max{k1, k2} hops away.
When it receives the interest, it verifies k1 MACs (if present)
and injects its own. Upon receipt of the corresponding content,
it verifies k2 MACs and injects max{k1, k2} MACs before
forwarding it downstream. If k1 < k2, each router in D1 would

be able to verify its k1 MACs. However, if k1 � k2, no router
in D1 that is k1 or more hops away from G can verify MACs
generated upstream of G.

C. Privacy
At each hop, the integrity zones scheme requires interests

(respectively, content objects) to identify k downstream (re-
spectively upstream) routers using their KeyId-s. This reveals
path information to each router, something that was not
previously visible in CCN. This may be problematic at the
network edges, specifically, when a R is less than k hops
away from a consumer-facing router.

IX. RELATED WORK

On-path attacks were only directly addressed by
DiBenedetto et al. [6]. As previously discussed, this
work depends on the adaptive forwarding layer of NDN
(and CCN), as discussed in [16]. Wu et al. [17] proposed a
similar approached called Router-Oriented Mitigation (ROM).
Their scheme generalizes the binary trust value of [6] and
instead assigns each router a reputation. This reputation is
then taken into account when making forwarding decisions.
The goal is to eliminate, or at least bypass, on-path attackers
in the network. Approaches to make content verification
more efficient were proposed in [18]. The authors rely
on intelligent cache management without any changes to
the verification mechanism, i.e., the scheme still relies on
signature verification.

Previous work [4, 5] focused on the more generic problem
of content poisoning, irrespective of its relation to forwarding
behavior.

X. CONCLUSIONS

We proposed a means of mitigating on-path packet modi-
fication and generation attacks. Unlike previous work which:
(a) assumes no authoritative entity responsible for controlling
namespace ownership, and (b) sub-optimally and slowly routes
around on-path attackers, our approach allows routers to im-
mediately, i.e., in constant time, detect on-path attacks. More-
over, control plane modifications made to bypass the attacker
are made closest to the attacker, rather than closest to the
detecting consumer or router. Our approach is based upon the
observation that the attacker is very unlikely to compromise
several contiguous routers across administrative domains. We
show that the proposed scheme can be easily implemented
with the current CCN packet format and introduces very little
per-packet overhead. This makes our scheme widely applicable
to general network topologies and deployments.

XI. ACKNOWLEDGMENT

The authors are grateful to LCN 2017 reviewers for their
useful and insightful comments. Christopher A. Wood was
supported by the NSF Graduate Research Fellowship DGE-
1321846.

REFERENCES

[1] M. Mosko, I. Solis, and C. Wood, “Ccnx semantics,” IRTF draft-mosko-
icnrg-ccnxsemantics-04, ICNRG, 2017.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[3] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “Dos and ddos in named
data networking,” in 2013 22nd International Conference on Computer
Communication and Networks (ICCCN), July 2013, pp. 1–7.

[4] C. Ghali, G. Tsudik, and E. Uzun, “Needle in a haystack: Mitigating
content poisoning in named-data networking,” in Proceedings of SENT
Workshop, 2014.

[5] C. Ghali, G. Tsudik, and E. Uzun, “Network-layer trust in named-data
networking,” ACM CCR, vol. 44, no. 5, pp. 12–19, 2014.

[6] S. DiBenedetto and C. Papadopoulos, “Mitigating poisoned content
with forwarding strategy,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2016 IEEE Conference on. IEEE, 2016, pp.
164–169.

[7] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” in Co-NEXT, 2009.

[8] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan,
“An empirical study of namecoin and lessons for decentralized names-
pace design,” in Workshop on the Economics of Information Security
(WEIS). Citeseer, 2015.

[9] J. J. Garcia-Luna-Aceves, “Name-based content routing in information
centric networks using distance information,” in Proceedings of the 1st
international conference on Information-centric networking. ACM,
2014, pp. 7–16.

[10] M. T. Goodrich, “Leap-frog packet linking and diverse key distributions
for improved integrity in network broadcasts,” in Security and Privacy,
2005 IEEE Symposium on. IEEE, 2005, pp. 196–207.

[11] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The aes-cmac algorithm,”
Tech. Rep., 2006.

[12] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-hashing for
message authentication,” 1997.

[13] “CCNx Module for NS3,” https://github.com/chris-wood/ccns3Sim, ac-
cessed: May 14, 2016.

[14] “CCNx on-path simulator,” https://github.com/chris-wood/
ccn-onpath-simulation-ccnsim, accessed: May 14, 2016.

[15] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”
Modeling and tools for network simulation, pp. 15–34, 2010.

[16] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, 2013.

[17] D. Wu, Z. Xu, B. Chen, and Y. Zhang, “What if routers are malicious?
mitigating content poisoning attack in ndn,” in Trustcom/BigDataSE/I
SPA, 2016 IEEE. IEEE, 2016, pp. 481–488.

[18] D. Kim, S. Nam, J. Bi, and I. Yeom, “Efficient content verification
in named data networking,” in Proceedings of the 2nd International
Conference on Information-Centric Networking. ACM, 2015, pp. 109–
116.

