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ABSTRACT

Content-Centric Networking (CCN) is an alternative to today’s In-
ternet IP-style packet-switched host-centric networking. One key
feature of CCN is its focus on content distribution, which dominates
current Internet traffic and which is not well-served by IP. Named
Data Networking (NDN) is an instance of CCN; it is an on-going
research effort aiming to design and develop a full-blown candidate
future Internet architecture. Although NDN’s emphasizes content
distribution, it must also support other types of traffic, such as con-
ferencing (audio, video) as well as more historical applications, such
as remote login and file transfer.

However, suitability of NDN for applications that are not obvi-
ously or primarily content-centric. We believe that such applica-
tions are not going away any time soon. In this paper, we explore
NDN in the context of a class of applications that involve low-
latency bi-directional (point-to-point) communication. Specifically,
we propose a few architectural amendments to NDN that provide
significantly better throughput and lower latency for this class of ap-
plications by reducing routing and forwarding costs. The proposed
approach is validated via experiments.

1. INTRODUCTION

Today’s Internet is an effective platform for a multitude of di-
verse applications, including: WWW, Email, P2P and VoIP. Its main
architectural pillar is IP 1], which follows the host-centric packet-
switched communication paradigm, where each host is referred via
one or more interface addresses and communication is performed via
IP datagrams. Although this model has lasted for decades, exceed-
ing all expectations, it is starting to fray. The Internet is being used
to distribute greatly increasing amounts of digital content. This un-
precedented and lasting growth spurt is due to the proliferation and
popularity of multimedia content, social networks as well as increas-
ing amounts of user-generated content. The resulting fundamental
change in the nature of Internet traffic has exposed limitations of
the current IP-based architecture. To this end, some projects aiming
to design candidate next-generation Internet architectures started
within the last several years.

Named-Data Networking (NDN) [2]] is one such effort that exem-
plifies the Content-Centric Networking (CCN) approach [3} 4, |5].
NDN explicitly names content instead of physical locations, such as
hosts or network interfaces. Instead of a conversation-style seman-
tics of IP where hosts directly address each other, NDN applications
request content via a human-readable name; the network is in charge
of locating and returning the closest copy of requested content. (See

*Work done in part while at UC Irvine.

*The authors were supported by the NSF under project CNS-1040802 —
“FIA: Collaborative Research: Named Data Networking (NDN)”.

ACM SIGCOMM Computer Communication Review

14

Section [2] for more NDN details.) NDN also stipulates that each
piece of named content must be digitally signed by its producer.
This allows decoupling of trust in content from trust in entities that
might store and/or disseminate that content.

NDN is primarily oriented towards efficient large-scale content
distribution. it is unclear how it would fare in the context of appli-
cations that do not fit the content distribution paradigm. In order
to become a viable alternative to IP, NDN must also provide evi-
dence of support for other types of Internet traffic. In other words,
overall practicality of NDN depends, among other things, on how it
performs outside its forte.

Recent and on-going research has shown that NDN offers signifi-
cant advantages compared to IP in terms of performance, security
and functionality (in particular, naming) with respect to real-time [|6],
group [7|] and anonymous communication [8]]. This paper focuses
on one specific type of Internet traffic that exhibits characteristics
very different from content distribution. It corresponds to a class
of applications that involve low-latency bi-directional synchronous
communication, such as audio and/or video conferencing as well as
more legacy applcations such as remote login. As shown in [[6] voice
conferencing is feasible when NDN is used as an IP overlay. While
we do not claim that this application class is not accommodated
by NDN, we believe that NDN is not particularly well-suited these
needs. This motivates us to explore add-on techniques that might of-
fer better performance. As we show below, simple amendments that
retain basic NDN features (and do not affect content distribution-
type traffic) result in markedly improved end-to-end throughput and
bandwidth utilization. This assertion is supported by experiments.

Organization. After a brief overview of NDN in the next section,
we provide some motivation for optimizing bi-directional commu-
nication in NDN, in Section 3] Then, in Section @] we describe
an interest-bundle scheme that, while leaving key NDN features
intact, offers markedly better performance for low-latency point-to-
point bi-directional communication. We then discuss, in Section[5]
NDN modifications that support our design. Section [f]reports on
experimental results that confirm claimed performance gains. We
overview related work in Section[7and conclude in Section 8l

2. NDN OVERVIEW

NDN supports two types of messages: interests and content pack-
ets [9]]. A content packet contains a human-readable name, actual
data (content) and a digital signature computed by the content pro-
ducer over the packet. Names are hierarchically structured, e.g.
/usa/cnn/frontpage/news where “/” is the boundary be-
tween name components. An interest packet contains the name of
the content requested or prefix of such a name, e.g. /usa/cnn/ is
a prefix of /usa/cnn/frontpage/news. In case of multiple
content matching a given name prefix, optional control informa-
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tion can be carried within the interest to restrict the desired content.
Content signatures provide integrity and data origin authentiction.
However, trust management (particularly, the relationship between
keys and name prefixes) is the responsibility of the application.

All NDN communication is receiver-driven: a consumer initiates
communication by sending an interest for a specific content. NDN
routers forward this interest towards the content producer responsi-
ble for the requested name, using name prefixes (instead of today’s
IP prefixes) for routing. Forwarding Information Base (FIB) is a
lookup table used to determine interfaces for forwarding incoming
interests, and contains [name_prefix, interface] entries. Multiple
entries with the same name_prefix are allowed, supporting multi-
ple paths under which a given name_prefix namespace is reachable.
Akin to an IP forwarding table, FIB can be populated either by a
routing protocol or manually.

When a producer needs to push some content, it cannot unilater-
ally do so. Instead, it must send an interest to the intended receiver,
who in returns responds with one or more interests for the content.
The consumer can also acknowledge the interest from the producer
with a content packet.

Each NDN router maintains a Pending Interest Table (PIT) — a
lookup table containing outstanding [interest, arrival-interfaces)
entries. The first component of a PIT entry reflects the name of
requested content, and the second — a set of interfaces from which
interests for this content have arrived.

When an NDN router receives an interest, it first looks up its
PIT to determine whether an interest for the same named content is
currently outstanding. There are three possible outcomes:

1. If the same name is already in the router’s PIT and the ar-
rival interface of the present interest is already in the set of
arrival-interfaces of the corresponding PIT entry, the interest
is discarded.

2. If a PIT entry for the same name exists and the arrival interface
is new, the router updates the PIT entry by adding a new
interface to the set; the interest is not forwarded further.

3. Otherwise, the router creates a new PIT entry and forwards
the present interest using its FIB.

Upon receipt of the interest, the producer injects content into the
network, thus satisfying the interest. The requested content is then
forwarded towards the consumer, traversing — in reverse — the path
of the corresponding interest. Each router on the path flushes state
(deletes the PIT entry) containing the satisfied interest and forwards
the content on all arrival interfaces of the associated PIT entry. In
addition, each router (optionally) caches a copy of forwarded content
in its local Content Store (CS). Unlike their IP counterparts, NDN
routers can forward interests out on multiple interfaces in order to
maximize the chances of quickly retrieving requested content.

The above description of interest forwarding only applies to con-
tent that has not been recently requested, i.e., not present in CS-s
of intervening routers. Whereas, a router that receives an interest
for already-cached content does not forward the interest further; it
simply returns cached content and retains no state about the interest.

3. MOTIVATION

As follows from the previous discussion, the NDN architecture is
primarily geared to applications that disseminate content. Routers
directly assist content distribution by, whenever possible, satisfying
consumer interests with cached content. This is different from IP,
since NDN decouples the flow of content from the notion of content
location.

In this paper, we focus on bi-directional conversation-style ap-
plications over NDN. Representative applications of this class are:
audio/video conferencing, interactive chat, and remote login.
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To support this communication paradigm in NDN, each end-point
(e.g., Alice and Bob) must register its own namespace, and dur-
ing the conversation, play the role of both producer and consumer
of content. Before describing the session establishment and data
exchange protocol, we refer to Figure[T]for a high-level overview.
To initiate a session, Alice issues an interest for Bob’s namespace,
embedding her own namespace prefix in the name (as a suffix). Bob
receives the interest and parses the name which indicates that Alice
is requesting a session. Bob then responds with a content acknowl-
edging agreement to establish a session. Thereafter, data flows in
both directions: Alice and Bob exchange interests for each other’s
namespaces and generate content accordingly. Such a session can
be viewed as two flows: Alice and Bob each request (and receive)
the other party’s content via interests. NDN routers that forward
interests and content between Alice and Bob are oblivious to the
conversation. The two flows (Alice—Bob and Bob—Alice) might
even wind up using asymmetric paths. This type of communication
does not get the main benefit of NDN router-side caching, since
content is only intended to be received by one end-point.

Connection Setup Phase

Alice Bob

(caller) (callee)

=g

| Empty content to accept session |

Interest to request session

Data Flows
(1) Alice to Bob (2) Bob to Alice

e < &

Interests to Bob Interests to Alice

Content to Alice Content to Bob

Figure 1: Bi-directional communication between Alice and Bob.

We note that NDN, in its current state, is not well-suited for this
type of communication. Even though, as the above description
shows, bi-directional communication can be supported by NDN, the
result is somewhat awkward and inefficient. Consider what it takes
for Alice and Bob to exchange one content packet in each direction:
(1) Alice issues an interest in Bob’s next content, (2) Bob replies
with requested content, (3) Bob issues an interest in Alice’s next
content, and, finally, (4) Alice replies. All this requires two interests
and two content packets. Each of these packets traverses a sequence
of NDN routers and requires separate processing. For each router,
an interest packet entails [9]:

(i.1) packet reception from layer below

(i.2) PIT look-up (existing entry for the same name?)
(i.3) creation of a new PIT entry

(i.4) FIB look-up, and

(i.5) forwarding to next hop

Note that step 7.2 is designed to collapse duplicate interests, i.e.,
those issued by different consumers for the same content. However,
in our setting of a point-to-point session, (i.2) is nearly useless, since
only Alice issues interests for Bob’s content and vice-versa. Its only
remaining utility is in handling inadvertent retransmissions. Also,
given that numerous interests flow from Alice to Bob as part of the
same session, performing (i.4) for each interest seems wastefulﬂ

"Routing could conceivably change while a session is in progress;

Volume 44, Number 1, January 2014



Furthermore, for each content packet in either direction, every
intervening router must perform:

(c.1) packet reception from layer below

(c.2) PIT look-up: content name—pending interest

(c.3) caching content in CS

(c.4) deletion of a PIT entry, and

(c.5) forwarding to next hop, where the interest came
f

In summary, to exchange a content packet in each direction, each
router must perform (i.1)-(i.5) and (c.1)-(c.5) operations twice. We
believe that the corresponding overall amount of “work” is excessive
and can be optimized for better performance. More generally, we
believe that making NDN more friendly to bi-directional point-
to-point communication is worthwhile, since, as discussed earlier,
applications that involve this type of communication are here to
stay, and their requirements are quite distinct from those of content
distribution.

We note that router caching benefits not only efficient content
distribiution. It also facilitates efficient recovery from packet loss,
i.e., if a content packet is lost (e.g., due to wireless channel error or
mobility), a consumer can re-issue an interest obtain desired content
from some nearby router’s cache. NDN modificications proposed in
the next section retains this feature.

4. DESIGN

One of the key modifications we proposed is adding a new (third)
packet type to the NDN architecture, which we refer to as a bundle
packet, geared specifically for conversation-style applications. A
bundle packet essentially combines a content packet with an interest
packet, both of which travel to the same end-point. Intuitively, the
main idea is as follows:

Suppose that Bob receives an interest for its next con-
tent (e.g., keystroke or voice frame, depending on the
application) from Alice. Suppose that Bob also needs
to obtain Alice’s next content. Instead of responding
to Alice’s interest with a content packet and separately
issuing an interest for Alice’s next content, Bob bundles
the latter with the former.

Using bundle packets offers two benefits:
1. Fewer packets means that there are fewer API invocations,
i.e., steps (i.1)/(c.1) and (i.5)/(c.5) are conjoined.
2. No FIB look-up (i.4) needs to be performed for a bundled
interest since it travels along with content for which router
PIT state already indicates the next hop.
In more detail, processing a bundle packet by an NDN router in-
volves the following actions:

(p.1) packet reception from the layer below

(p.2) PIT look-up: content name—pending interest
(p.3) caching bundled content in CS

(p.4) create new PIT entry for bundled interest
(p.5) deletion of the original PIT entry, and

(p.6) forwarding bundle packet to the next hop

Compared with steps (c.1)-(c.5) and (i.1)-(i.5), processing a bun-
dle packet is much more efficient. In fact, the only extra action
performed by a router over and above processing a separate content
packet is (p.4) — creation of a new PIT entry, while avoiding all
processing steps associated with an interest packet. At the same
time, sending a bundle packet is functionally equivalent to sending
an interest and a content packets separately.

we discuss this in Section@

ACM SIGCOMM Computer Communication Review

16

The rest of this section describes the construction and processing
of bundle packets.

4.1 Constructing Bundle Packets

We consider two ways of forming bundle packets: concatenation
and embedding. The most obvious way to form a bundle packet is
to simply concatenate an interest packet to a content packet while
leaving them essentially intact, except for a flag in the content header
indicating that this is a bundle packet.

The second approach is similar, however, the interest is now em-
bedded within the content packet. In this case, additional fields are
needed to specify the interest offset. The main functional distinction
of this approach is that the entire packet (both content and interest
parts) are covered by the producer’s (sender’s) signature. This has
certain security implications, which we discuss below.

There are some obvious trade-offs between concatenation and
embedding. The former allows more flexibility, since any router that
processes a bundle packet can easily decouple interest and content
and forward them separately. This allows routers to apply local
policy and choose whether to treat bundle packets as one unit or
un-bundle them. It also allows bundle support to be introduced
incrementally. For example, an NDN router that knows that its
next-hop neighbors do not support bundling must decouple bundle
packets before forwarding.

In case of embedding, this flexibility is lost since the producer’s
signature covers the entire bundle packet and decoupling is impos-
sible without violating one of the main NDN tenets — verifiability
of content packet signatures by any NDN entity, including routers.
(Clearly, a router can neither recompute nor modify the content
producer’s signature). On the other hand, embedding offers bet-
ter overall security, since interests can be authenticated along with
content. This helps in mitigating so-called interest flooding attacks
[1O].

Another potential consideration is privacy: NDN interests are not
signed by design since a public key signature leaks its source, i.e.,
the signer’s (content producer’s) identity. In case of embedding,
interests are signed along with content. However, privacy of NDN
interests is most relevant in the context of distribution of popular
content, i.e., situations where multiple consumers request the same
content. This is very different from our setting of point-to-point bi-
directional communication where both end-points are well aware of
each other. We also consider the privacy issue from the perspective
of NDN routers. Normally, an NDN router does not learn the
identity of the source of an interest (content consumer). It only
learns the identity of the producer of content that satisfies that
interest. However, in the context of processing a bundle packet,
an NDN router learns that the content and the bundled interest are
originated by the same entity.

We also note that, in terms of privacy, there is almost no difference
between concatenation and embedding. Regardless of whether or
not a bundled interest is covered by a signature, any entity that sees
a bundle packet clearly learns the origin of both the content and the
interest components.

While some loss of privacy seems to be inherent to the use of bun-
dle packets, there are also potential avenues for security and privacy
improvements per directional flow. For example, routers can apply
certain policies to protect conversational flows from eavesdroppers.
They can discard interests received off-path, thus preventing any ad-
ditional parties from accessing session content. This might, however,
impact error recovery mechanisms, e.g., if a route change causes an
end-point to re-issue an interest over a different path.
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4.2 Using Bundle Packets

As mentioned earlier, applications that involve continuous bi-
directional (point-to-point) communication stand to benefit the most
from bundle packets. Such applications generate interest and content
packets in a synchronous manner, with data continuously flowing
in both directions. Audio/video conferencing is one example of
this application class. Such applications tend to have strict timing
constraints on bandwidth and latency in order to ensure satisfactory
end-user experience. For example, we consider an audio conferenc-
ing application running over plain NDN — without bundling. We
then show how bundling helps and discuss some issues related to
packet loss.

1. Alice and Bob each launch their audio-conferencing applica-
tion, registering their respective namespace to receive interests
and publish content (voice data): /abc/alice/voice and
/xyz/bob/voice.

2. Alice initiates a call to Bob by issuing an interest for:
/xyz/bob/call/[alice]. The [alice] component
is an opaque embedding of Alice namespace prefix so Bob
knows where to send subsequent interests.

3. Bob upon receipt of the interest, parses the suffix compo-
nent to determine Alice’s namespace. Bob accepts the call
responding with a content packet as an acknowledgement.

4. Bob sends an interest anticipating content from Alice. The
first such interest is: /abc/alice/call/[bob] /0. The
trailing component (“0”) represents the initial sequence num-
ber of Alice’s content which Bob wants to retrieve.

5. Alice responds with the initial content and also issues an
interest expecting content from Bob: /xyz/bob/call/

[alice] /0.

Each party generates content at some negotiated rate, e.g., every
20ms (i.e., rate = 50pkts/sec). Interests are issued with increas-
ing sequence numbers to keep pace with available content. Typically
a sliding window mechanism is used to achieve pipelining. The win-
dow size w (corresponding to the maximum number of outstanding
interests), is selected such that the streaming of content overlaps
with the round-trip time (RTT), i.e., w = [RTT - rate]. This en-
sures that both parties receive a continuous audio stream throughout
the session.

In Steps 3 and 4, Bob can start taking advantage of bundle packets
by combining the acknowledgement and his first interest. For her
part, upon receipt of Bob’s first bundle packet, Alice can respond
with a bundle packet with her own audio content and an interest
requesting audio content from Bob. Hereafter, both parties continue
to exchange bundle packets in lock-step, until the end of the session.

An important advantage of using bundle packets is that each inter-
vening NDN router performs only one FIB look-up for the entire
session. (With a sliding window, w route lookups are performed.)
This single FIB look-up is done in Step 1, when Alice issues her
initial interest to Bob. This represents substantial savings for NDN
routers, resulting in lower overall latency. Also, due to using bundle
packets in a lock-step fashon, Alice and Bob use the same route
in both directions; this route is “fixed” by Alice’s initial interest.
(Albeit, with a sliding window, up to w routes might be used.) This
provides a reliable measure for RTT between the two end-points, as
determined by Alice upon receipt of the first bundle packet.

The above scenario and expected savings occur under ideal net-
work conditions, with stable routing and low congestion. Dynamic
route changes and packet loss would certainly cause disruption. To
recover from such events, the application can (and should) tem-
porarily revert to sending interest and content packets separately.
Bundling can be resumed once a new reliable path between the
parties is established.
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The above scenario shows that conferencing applications are
well-matched to bundle packets. However, we emphasize that this
technique is equally applicable to any applications requiring low-
latency bi-directional communication. For example, a file transfer
application can combine interests for additional content with ac-
knowledgement packets. Also, an interactive chat application can
bundle keep-alive (content) and interest packets if there is no actual
data ready to be sent, to prevent PIT entries created by bundles from
expiring.

S. IMPLEMENTATION

Our implementation of bundle packet support is based on the
open-source NDN prototype, CCNx [11]], which was originally
developed at the Palo Alto Research Center (PARC) and was later
made available to the academic and research community.

The main components of CCNx are the software forwarder (ccnd)
and the CCN client library (1ibccn). Both are implemented in
C. Packets in CCNx have a free-form structure and allow for vari-
able sized fields. The prototype does not impose any limitation
on the field size or packet length. Packets are encoded using a
compact binary XML representation known as CCNx Binary En-
coding (“ccnb”) [[12], which is designed specifically for CCNx.
The client library provides full support for encoding and decoding
cenb-structured data and provides high-level API functions to create
ccnb-encoded interest and content packets.

The ccnd forwarder implements the NDN router functionality,
including FIB, PIT, and Content Store (CS). All packets are sent and
received through a “face”. A face extends the notion of a network
interface to include virtual transport mechanisms such as TCP/UDP
tunnels and inter-process communication mechanisms. In addition
to interfacing with other routers, this allows applications to commu-
nicate directly through a face. In order to support bundle packets,
we: (1) define a new packet structure; (2) specify new encoding
and parsing functions in CCNx client library; and (3) modify the
forwarder to support the new packet type. Our implementation is
based on CCNx 0.5.1.

As discussed in Section 2] we consider two approaches — concate-
nation and embedding — to forming a bundle packet. Although they
can coexist, we currently only provide support for the former. The
encode function takes a ccnb-encoded interest and content as input
and returns a ccnb-encoded bundle packet. The packet structure
defines a distinguishing tag labelled Bundle to allow parsers to
distinguish it from Interest and Content tags. The rest of
the layout is followed by two tagged arbitrary-size binary objects
containing the corresponding content and interest.

A bundle packet parser function is also included. It takes a bun-
dle packet and extracts encapsulated interest and content packets
returning a copy of both as ccnb-encoded data.

An application sends a bundle packet in the same manner as an
interest. If a bundle packet is issued, the interest packet is extracted,
registered in the client PIT along with a callback handler to process
the corresponding incoming content. Then, the bundle packet is
delivered over the IPC socket connecting to the forwarder.

The ccnd forwarder runs an event loop which does the following:
(1) polls each face for incoming data and assembles ccnb-encoded
packets, (2) processes packets according to their type, and (3) for-
wards any outstanding data. Code that handles (1) and (3) is agnos-
tic with respect to data being sent or received. Therefore, we only
needed to modify (2) to include support for bundle packets.

The packet processing function parses a ccnb-encoded data stream
and determines whether the opening tagis Interest or Content.
It then calls the appropriate handler. We add a branch to distinguish
a Bundle tag, and call a custom bundle handler function.
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The bundle handler extracts the encapsulated interest and content
components. First, a modified interest handler function is called,
duplicating the functionality of the original interest handler, except
for propagating the interest. The forwarding look-up is retained
in case the content does not satisfy any interests. The modified
content handler is called with both the content and bundle messages.
The content is then processed in the same manner as in the original
handler, except the bundle packet is cached in the CS. If an interest
is satisfied, the bundle packet is placed into the outbound queue of
the outgoing face.

6. EXPERIMENTS

We built a prototype file exchange (bi-directional transfer) appli-
cation between two users. This application comes in two flavors:
with and without bundle support. To perform a fair comparison, the
prototype with bundle support is run exclusively on the modified
CCNx code base. The other prototype runs on the original unmodi-
fied CCNx code. We refer to the two application instances running
on the users’ hosts as A (Alice) and B (Bob).

ccnd

S

Node 2

ccnd ccnd

=

Node 1

Node 3

Figure 2: Topology used in our experiments. Node 3 is the forwarder,
Nodes 1 and 2 run applications A (Alice) and B (Bob), respectively.

Topology used in our experiments is composed of three NDN
nodes. The first node runs A and a copy of the ccnd process that
acts as a local NDN router. Similarly, the second node runs B and
ccnd. Finally, the third node (forwarder) forwards traffic from A
and B via its local copy of ccnd.

Mutual file transfer is started by A, which sends an interest to
B signaling the beginning of the process. B responds with the
corresponding content and with its own interests for A’s content.

The two parties send a total of 10, 000 interests each, retrieving
the same number of content packets. Payload size of each content
packet is 1, 000 bytes. The total amount of data sent from A to B
(and, from B to A) is about 10MBytes. We also performed exper-
iments with content packets with payload sizes, varying between
100 and 4, 000 bytes. We omit these results due to space constraints,
since they are virtually identical to those presented below.

Application A runs on a host with a quad-core Intel Xeon E5620
2.4GHz processors with 12GB of memory. The forwarder runs on an
machine with two quad-core Intel Xeon E5420 at 2.5GHz equipped
with 16GB of RAM. Application B runs on a node equipped with an
Intel Core2Duo 2.13GHz processor and 3GB memory. All machines
run Ubuntu Linux and are connected using 100Mbps full-duplex
Ethernet links with a maximum MTU of 1500 bytes.

In order to achieve maximum throughput our prototype uses
pipelining, via sliding window, as described in[4.2] In particular, A
sends w interest packets to B. For every interest from A, B replies
with the appropriate content packet followed by an interest for A’s
content. Similarly, for each interest received from B, A replies with
a content packet and a new interest. After that, A and B continue
the exchange in lock-step until the transfer completes.

When using bundle packets with a sliding window, the first w
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interests from A and the last w content packets received by B are
not bundled. (In other words, they are sent as regular interest and
content packets, respectively). All other packets are bundled. For
example, if w = 1, A sends one interest and B responds with a
bundle packet. A issues its next bundle packet upon receiving one
from B. This continues until the very last bundle from A to B. Upon
receipt of that last bundle, A has no further interests and it sends the
remaining content packet to B.

Clearly, w is impacts packet processing by the forwarder. A
large w might cause several packets to be queued in the forwarder’s
buffer, introducing delay. Since the choice of w significantly affects
performance, we experimented with varying w between 1 and 40.
For each experiment, we measured the following:

1. Forwarding Processing Time (FPT): time for the forwarder
to (logically) forward a content packet and and an interest
packet in either direction. With bundling, we measured FPT
as the time to forward a single bundle packet. Without it,
FPT is measured as the sum of the times needed to separately
forward a content packet and an interest packet.

2. Round Trip Time (RTT): time for an interest to retrieve
its corresponding content packet. With bundle packets, we
measured RTT as the time for a bundle packet to retrieve the
corresponding content (contained within a bundle) from the
other party. This slightly penalizes the bundle approach, since
measured RTT corresponds to the transfer of a larger amount
of data than in the non-bundle case.

3. Transfer Time (TT): time to transfer all data involved in the
experiments (10 MBytes of content) from A to B.

6.1 Experimental Results

Figure[3dillustrates FPT for variable window sizes. Results show
that, for all window sizes considered, FPT of a bundle packet is lower
than that of an interest plus a content packet. In particular, forw = 1,
average processing time decreases by 14.5% for the bundle case.
Meanwhile, for w = 2, bundling provides the biggest improvement
— processing time decreases by 16%. For larger window sizes, the
difference between the two approaches gets smaller. However, it
remains significant with a minimum of 6.9% for w = 40. This
confirms that, by reducing the number of FIB lookups and lowering
layer 2-3 and API call overhead for processing interest and content
packets separately, the bundle approach allows the forwarder to
achieve significantly better performance.

Note that there is a decreasing trend in FPT as we increase window
size for both cases. This is partially because of the way CCNx
handles packets in its incoming buffer: as we increase window size,
the number of invocations of packet (interest or content) processing
routines in ccnd decreases. In other words, when multiple packets
are (temporarily) stored in a router’s incoming buffer, ccnd can
pull and process many of them at once.

Figure [3b] shows average RTT for our experiments. In it, for
w < 5, RTT of non-bundled packets is lower. The reason is that
bundled packets are larger than single interest or content packets. In
the non-bundled case, the smallest RTT is achieved when w = 2.
This reflects our observation above: when ccnd’s incoming buffer
contains multiple packets, such packets are processed together, thus
saving forwarding time. When w = 1, the forwarder’s buffer always
contains at most one packet; with w = 2, the buffer often contains
two packets. However, further increasing w does not provide ad-
ditional benefits for non-bundled case, since savings in processing
time are outweighed by the waiting time of multiple packets in the
forwarder’s buffer.

Since bundle packets have lower processing overhead compared
to interest/content packet pairs, the smallest RTT occurs when
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Figure 3: (a) Forwarding Processing Time (FPT) (b) Round Trip Time (RTT) and (c) Transfer Time (TT) for various window sizes.

w = 10. This RTT is almost identical to that of non-bundled
case with w = 2. As shown below, larger window size implies
better throughput. Therefore bundling allows our test application to
achieve higher throughput with minimum latency.

Figure shows the transfer time (TT) for both bundle and non-
bundle cases for various window sizes. For small w, TT is higher
for bundle packets. This accounts for the fact that, in our setup, the
optimal window size is greater than 2: in this case, RTT becomes
a limiting factor for the transfer rate, since the end-points end up
waiting rather than issuing new interest and content packets.

As expected, TT decreases for large values of w, where w > 5,
thus improving the transfer rate. An application should ideally scale
its window size, with an initial setting to at least the Bandwidth-
Delay Product [13] of the session.

7. RELATED WORK

There has been no previous work in terms of combining re-
quests and responses in bi-directional communication over CCN.
Somewhat related work has been done for TCP with selective ac-
knowledgments (SACK) [14] and its extension, duplicate-SACK
(D-SACK) [[15]. SACK and D-SACK allow the receiver to selec-
tively acknowledge correctly received packets, such that the sender
must only re-send the packets that have been lost. This is a signif-
icant improvement over older cumulative TCP ack techniques in
presence of multiple packet loss from one window of data.

In [16]], Clark et al. studies the effect of bi-directional traffic on
TCP congestion control algorithm. In particular, it was observed
that, in the BSD Tahoe TCP implementation, packets from a single
connection are clustered together, similarly to what was earlier ob-
served in [17] for one-way traffic. This causes ACK compression,
which significantly reduces available bandwidth for TCP connec-
tions. [16] also shows that, for two-way traffic, the issue of ACK
compression is made worse by t he interaction of ACKs and data
packets in the queue.

8. CONCLUSION AND FUTURE WORK

In this paper we show that NDN, in its current state, is not well-
suited for bi-directional low-latency point-to-point communication.
To provide better efficiency for applications requiring this type of
communication, we introduce a new bundle packet type that bun-
dles a content with an interest traveling in the same direction. This
results is roughly half the number of overall packets and reduces
processing time in NDN routers, which translates into improved
end-to-end throughput and lower round-trip time. Furthermore,
introduction of bundle packets preserves existing NDN architec-
tural features. We conducted extensive experiments demonstrating
substantial performance due to the use of bundle packets.
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Clearly, this work is only intended as a first step towards efficient
and reliable bi-directional point-to-point communication over NDN.
Items for future work include the following:

e Additional experiments over more complex topologies, in-
cluding the official NDN testbed [18]], in ordr to determine
the impact of reduced processing time over longer routes.

e Extending the bundle model to handle bi-directional multi-
cast traffic, such as audio/video conferencing among multiple
users or sites.

o Evaluating the impact of many concurrent flows (rather than
just a single one) between two or more nodes.

Furthermore, we plan to identify, and experiment with, other classes
of traffic that can benefit from relatively small changes to the NDN
architecture.
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