
FROG: A Packet Hop Count based DDoS
Countermeasure in NDN

Yoshimichi Nakatsuka
University of California, Irvine, USA

nakatsuy@uci.edu

Janaka L. Wijekoon
SLIIT, Sri Lanka
janaka.w@sliit.lk

Hiroaki Nishi
Keio University, Japan

west@sd.keio.ac.jp

Abstract—Named Data Networking (NDN) is a promising
inter-networking paradigm that focus on content rather than
hosts and their physical locations. In NDN Consumers issue
Interests for Contents. Producers generate a content in response
to each received interest and such content is routed back to
the requesting consumer. When compared to IP, NDN brings
advantages such as better throughput and lower latency, because
routers are able to cache popular contents and satisfy interests for
such contents locally. However, before being considered a viable
approach, NDN should offer security services that are ideally
better, but at least equivalent to current mechanisms in IP.

In this regard, mechanisms to prevent DDoS are of paramount
importance. In this work we propose FROG: a simple yet effective
Interest Flooding Attack (IFA) detection and mitigation method.
FROG runs on routers that are directly connected to NDN con-
sumers and monitors packet hop counts. It then calculates mean
and variance using stored hop counts to distinguish attackers
from legitimate users. We use the NDN simulator ndnSIM to
evaluate FROG’s effectiveness. Our results show that FROG
improves resilience against DDoS attacks. In particular, during
an attack, legitimate users can still receive 75% of requested
contents. Without FROG this number decreases to 50%.

Keywords—DDoS attack, Information-Centric Networking, In-
terest Flooding Attack, Named Data Networking, Packet Hop Count.

I. INTRODUCTION

The concept of Information-Centric Networking (ICN) [1]
was introduced with the motivation of filling the gap between
the end-hosts’ needs and the network’s structure. ICN uses in-
formation as the core of all network functions and applications
[2]. Several implementations of the concept of ICN [3–7] were
proposed in the recent past, being Named Data Networking
(NDN) [3] one of the most popular.

Security in ICNs has been well investigated [8] and Dis-
tributed Denial of Service (DDoS) resilience is one of the criti-
cal services that are needed in the architecture. In this work we
focus on a particular type of DDoS: Interest Flooding Attacks
(IFAs). We start by categorizing IFAs in four types and we
show that, out of the four, two IFAs – Dynamically-Generated
Existing Attack (DGEA) and Dynamically-Generated Non-
Existing Attack (DGNEA) – are effective attacks. IFA re-
sembles modern DDoS attacks, but many existent defense
mechanisms are not effective in ICNs because of lack of
IP addresses. Therefore, several works [9–11] have proposed
IFA specific detection metrics and mitigation algorithms (in
Sec. III, we go over some of these works in details). Most
of these works target DGNEA and the only exception, which

targets DGEA, is [12]. However, the work in [12] has some
limitations as we discuss later on. In the present work we aim
to address the limitations of [12] by introducing FROG. In
summary, our contributions are the following:

• We present a novel DGEA detection metric based on packet
hop count values. Our metric is implemented and evaluated
using ndnSIM.

• We characterize the differences between legitimate users and
attackers with respect to the proposed metric. Based on the
insights from the characterization phase, we propose and
evaluate the FROG algorithm: a countermeasure for DGEA.

Organization: An overview of NDN is provided in Sec. II.
Related work is summarized in Sec. III. Models used for
simulation and the proposed detection and mitigation method
are explained in Sec. IV. Our method is evaluated in Sec. V.
We discuss improvements and limitations of our algorithm in
Sec. VI. Finally, Sec. VII concludes the paper.

II. BACKGROUND

A. Named Data Networking (NDN)

Names: All data in NDN is hierarchically and uniquely
named. A name is a combination of a prefix (used for routing
the packet) and a suffix (used for identifying the data at the
data producer). Consider an example of a video tagged with the
name ndn/com/videoservice/dog/video123.mp4.
The ndn/com/videoservice/ is the prefix used for rout-
ing, and /dog/video123.mp4 is the suffix used for the
producer to identify the requested content.

Communication: The basic communication in NDN uses
two types of packets: Interest packets or Interests and Data
packets or Contents1. A consumer initiates the communication
by issuing an interest for a certain content. Routers forward
the packet to its destination (i.e., a given producer) via Longest
Prefix Matching (LPM) on the name prefix. As the interest
traverses the routers, it leaves some state that allows the content
to be routed back to the requesting consumer. This is necessary
because interests do not carry source addresses (which is a
privacy friendly feature of NDN). The data producer sends
back the requested content through the same reverse path
traversed by the interest. As the content is forwarded back
it removes the state that was left by the interest at each router.
In addition, each router has the option of caching contents. If
a content is cached, the router can directly reply for an interest

1Through the rest of this paper we use the terms “data packet” and “content”
interchangeably



for such content, reducing latency and increasing throughput.
The term satisfied is used in the paper to indicate that a node
had received a content matching a pending interest issued in
the past.

Packet Structure: The structure of the two packets used
in NDN is significantly different from an IP packet [3]. A
noticeable feature of an interest and a Data packet is that
the packets require a content name, instead of an IP address.
The content name area is used by: 1) consumers to express
the content of interest, 2) data producers to identify the
requested content, and 3) routers to forward packets. Another
key feature is that all content is signed by it’s producer to
ensure authenticity.

Packet Forwarding State: Packet forwarding in NDN
relies on three modules: Forwarding Interest Base (FIB),
Pending Interest Table (PIT), and Content Store (CS). The
FIB stores a routing table for computing LPM on the interest
names, as in IP networks. The PIT keeps track of all pending
interests (ones that have not yet been satisfied) until a given
time limit. PIT stores the interest name and the corresponding
incoming interface. When a new content arrives at a router,
the router does a PIT look-up to figure out which interface
should be used to forward this content (i.e., the same interface
from which the interest of same name arrived). After that
the the PIT entry is erased and the content optionally cached
on the CS. CS caches content by creating a table that maps
content with corresponding names. CS is used to reply to future
interests locally with cached content, enabling better network
performance and utilization.

B. Classification of Interest Flooding Attacks

IFA is conducted by sending a large number of interests to
a target. Gasti et al. [13] classified IFAs into three types. Here
we classify IFA into four types, instead. As discussed below,
this classification is according to the type of name used in the
interests and according to whether the requested content exists.

• Static/existing attack (SEA):
In SEA, the attacker sends a large number of malicious
interests for a single existing content. SEA attacks in NDN
are mostly ineffective against the data producer, because,
after the first interest, it is likely that the content will be
cached in a router along the path. Therefore, interests after
the first one will not reach the producer.

• Static/non-existing attack (SNEA):
Attackers in SNEA request for a single non-existing content.
This attack is also not effective because the PIT rejects
interest with the same name to prevent duplicate entries.

• Dynamically-generated/existing attack (DGEA):
The difference between DGEA and SEA is that
the attackers’ interests in DGEA never hit routers’
caches, because they are dynamically-generated with
different names at each time. A dynamically-generated
name is made by combining an existing prefix
and a random suffix, resulting in a name such as
ndn/com/videoservice/3rf3amslrx8rm9sla7.
An interest with this name will be delivered to the data
producer owning the prefix ndn/com/videoservice/,
even though the suffix /3rf3amslrx8rm9sla7 does not
exist. In addition, the dynamically-generated name causes

multiple entries to be added to the PIT, as dynamically-
generated names are always different from each other.
In DGEA, PIT entries created by malicious interests are
erased when the corresponding Data packet arrives at the
node.

• Dynamically-generated/non-existing attack (DGNEA):
DGEA and DGNEA are much alike, as both use
dynamically-generated names, but the main difference is that
the PIT entries created by the malicious interests cannot be
erased until the entry itself expires because no content can
satisfy the interests.

III. RELATED WORK

Recent works have proposed IFA defense mechanisms [9–
11, 14–17]. However, the two key limitations listed below are
common to all of these works:

• DGEA is not considered. Some studies, such as [9] and
[10], mention DGEA, but focus on DGNEA as it is more
harmful. However, we claim that the damage of DGEA can
not be ignored. As most metrics used to detect DGNEA
are not applicable for detecting DGEA (PIT utilization rate
used in [10] is an exception), we argue that it is necessary
to propose a specific metric for DGEA detection.

• They assume that legitimate users request contents from a
single producer. However, in many cases users might request
contents from multiple data producers at the same time
(as multiple processes run at the same time in a single
computing platform).

To the best of our knowledge, the only related work that targets
an attack similar to DGEA, called Collusive IFA (CIFA),
is [12], which introduces a centralized controller to collect
information from routers. Their detection method successfully
detects CIFA and it could also be able to be used against
DGEA, but it has two limitations. First, centralized controller
implies an infrastructural change and a single point of failure.
If the controller itself becomes the target of the attack, the
defense mechanism cannot function properly. Second, there
is the possibility of some delay between attack detection
and attack mitigation. Our work aims at overcoming such
limitations.

IV. FROG

In this section we first describe our legitimate user model
and our adversary model. These models are used through the
rest of our characterization and evaluation. Next we present
our DGEA detection and mitigation method, FROG.

A. Legitimate User and Adversary Model

1) Legitimate user model: In this study, we assumed that
multiple data producers exist in the network and that interests
issued by legitimate consumers are uniformly distributed be-
tween the producers in the network. For the time between two
interests issued by a given consumer (i.e., the per-consumer
inter-interest time) we consider both uniform and exponential
distributions.



2) Adversary model: We assume that the adversary is able
to control an arbitrary number consumers. Routers are assumed
to be a trusted party controlled by the Internet Service Provider
(ISP).

Clearly, the adversary can attempt to mimic legitimate
users’ traffic patterns to remain undetected. The difference,
though, is that a DDoS attack concentrates all interests to a
single data producer. This implies a need for issuing interests
with dynamically generated names. Otherwise routers can
reply with cached content for a repeated name, preventing the
flooded interests from ever reaching the producer targeted by
the attack.

B. Attacker Behavior Characterization

Using the legitimate user model and adversary model
described in Section IV-A, we here analyze if it is possible
to tell apart attackers from legitimate users by using only
hop counts of Data packets (recall that data packets are those
carrying content replies issued by producers in response to
interest packets). The topology and parameters used in the
simulation are equivalent those used in Sec. V for evaluation.

Figure 1a shows the mean hop count of the attackers and
the legitimate users. From Figure 1a, we can observe that
the attacker’s mean hop count value is around 5, while the
legitimate users’ is around 3.5. Such difference was caused
because the attackers were receiving Data packets directly from
the data producers, while the legitimate users received Data
packets from both data producers and routers’ caches.

Figure 1b illustrates the hop count variance of the attackers
and the legitimate users. The results of Figure 1b depict that
the Data packets received by attackers have hop count variance
close to zero. On the other hand, the Data packets received
by legitimate users have initial hop count variance close to
1.0, which then gradually decreases. The legitimate users have
higher variance for two reasons. First, legitimate users receive
contents from producers and also from routers. Second, legit-
imate users request content from different producers, unlike
attackers that target one particular producer. Legitimate users’
variance decreases, because the number of data packets cached
in nearby routers keeps increasing over time.

C. FROG Approach

FROG uses packet hop counts gathered from Data packets.
Here, packet hop count refers to the number of routers a packet
passed when moving through the network. We first explain the
reasons for using Data packets to gather packet hop counts. We
then elaborate the principles of distinguishing attackers from
legitimate users using the hop count metric.

1) Using Data packets for counting packet hop counts:
Hop counts can be collected from either interests or Data
packets. Hop counts are stored in the “hop count tag” in the
packet header [18]. Whenever a node receives a packet, it can
access the hop count value by referencing the value of the hop
count tag. There are two specific reasons why we used Data
packets for counting the number of packet hops.

The first reason is that Data packets are more reliable
than interests. Interests cannot be certified in any way, and
the attackers can modify hop count values of the interest at

(a) Average of mean hop counts based on end-
host type

(b) Average of hop count variance based on end-
host type

Fig. 1: Legitimate user and attacker characteristics

their will. Therefore, it is impossible to figure out whether
the packet hop count of an interest is spoofed or not. On the
other hand, as discussed in Sec. II, Data packets carry their
producer’s digital signature. Therefore, the only way for an
attacker to spoof packet hop counts of Data packets is by either
controlling the producer or the routers. However, that violates
our adversarial model defined in Sec. IV-A2.

The second reason is that Data packets always reach a
single destination while interests do not. Interests can find
their matching data at either data producers or router caches.
Therefore, collecting the hop count of interests is a hard
task. On the other hand, there is no such problem when
collecting hop count values from Data packets, because the
Data packets always head back to the consumer that issued
the corresponding interest.

However, recall that consumers are not trusted. Thus,
routers directly connected to consumer are responsible for
collecting data packets’ hop counts.

2) FROG: FROG runs on client-edge routers due to two
reasons. The first reason is, as aforementioned, because packet
hop counts are collected at the client-edge routers. The second
reason is that the client-edge routers are connected directly
to the consumers. Therefore, FROG can stop the attack at its
origin. In addition, a single point of failure does not exist, as
FROG runs on multiple client-edge routers. At each client-
edge router FROG classifies the consumer as an attacker or a
legitimate user.
FROG detection algorithm runs on time windows. During each
time window, FROG monitors and stores the hop count values
of all received Data packets and the interface from which the
packet came from. At the end of a time window, all stored hop
count values are used to calculate the mean and the variance of



TABLE I: Parameters used in the simulation

Parameter Value
Data request frequency (legitimate user) 100 [Interests/sec]

Data request frequency (attacker) 100 [Interests/sec]
Data packet size 1024 [bytes]

Number of data producers 10
Bandwidth (Backbone to Backbone) 40-100 [Mbps]
Bandwidth (Backbone to Gateway) 10-20 [Mbps]

Bandwidth (Gateway to Client-edge) 1-3 [Mbps]
Bandwidth (Client-edge to End-host) 1-3 [Mbps]
Link Delay (Backbone to Backbone) 5-10 [ms]
Link Delay (Backbone to Gateway) 5-10 [ms]

Link Delay (Gateway to Client-edge) 10-70 [ms]
Link Delay (Client-edge to End-host) 10-70 [ms]

the hop count value for each consumer connected to the client-
edge router. The formula used for the calculation is shown in
Equation 1, where n indicates the number of total packets
received during the time window, xi the hop count value of
the i th packet, x̄ the mean of the total hop count value, and
v the variance of the hop counts stored.

v ≡
∑n

i=0(xi − x̄)2

n
, x̄ ≡

∑n
i=0 xi

n
(1)

A consumer is considered an attacker whenever the mean hop
count value is larger than a given threshold and the variance
of the hop count values is smaller than a given threshold. In
addition, FROG does not use any of the past detection results in
future time windows to prevent false detection from affecting
future decisions. When an IFA is detected, the incoming
interface that issued the malicious interest is marked as an
attack interface and then blocked.

V. IMPLEMENTATION AND RESULTS

We used ndnSIM [19, 20] to implement FROG. ndnSIM
is a NDN package for the network simulator ns-3 [21]. This
section first sets a static threshold for every FROG implemen-
tation to evaluate the effectiveness of the proposed defense
mechanism. Next, different thresholds are set for each FROG
implementation to show that FROG can detect and mitigate
DGEA more stably. The simulations used the Telstra topology
provided by Rocketfuel [22]. The original topology included
65 backbone routers, 45 gateway routers, and 169 client-
edge routers. In addition to these nodes, this study added 419
consumers to the topology. The attackers and the legitimate
users were randomly selected from the consumers, and the data
producers were directly connected to the backbone routers in
the simulation. The simulation time was set to 120 seconds
due to the fact that the median duration of real life DDoS
attacks is around 2 minutes [23]. The legitimate users start to
send their interests at time 0. The attackers start their attack
at time 10 seconds and end at time 110 seconds. The number
of legitimate users was set to 17, and the attackers were set
to 400 to simulate the situation of a botnet creating a DDoS
attack [24]. The other parameters used in the simulation, shown
in Table I, were set according to references [9–12] and Section
IV.

A. Case A: Setting a static threshold for each client-edge
router

1) Attack detection accuracy: Figure 1a and Figure 1b
show differences between attackers and legitimate users in

TABLE II: List of mean and variance threshold choices

Mean Hop Count
Threshold 3.0 3.5 4.0 4.5 4.9

Hop Count Variance
Threshold 0.01 0.5 1.0

TABLE III: Confusion Matrix and the component’s meanings

True False
Positive Attacker detected as an

attacker (TP)
Attacker detected as a
legitimate user (FP)

Negative Legitimate user detected
as an attacker (TN)

Legitimate user detected
as a legitimate user (FN)

Fig. 2: F-Score values of different thresholds

terms of mean and variance of hop counts. Using the threshold
listed in Table II, we conducted 15 simulations to determine
the appropriate threshold to effectively mitigate attacks. For
simplicity, only the exponential distribution traffic pattern was
used for threshold calibration. IFA detection rates for true
positives, true negatives, false positives, and false negatives
were computed for each simulation. Table III describes the
relationship of these four rates.

We calculated F-Score using Equation 2 for each simu-
lation and evaluated the consumer classification performance
of the proposed attack detection metric. A higher F-Score
indicates a higher performance in classification.

Fscore =
TP

TP + TN
∗ TP

TP + FP
(2)

The results of the simulations are shown in Figure 2. We
can observe that the F-Score is the highest when the threshold
of the mean is 3.5, and the threshold of the variance is 0.01.
The confusion matrix for the two thresholds is displayed in
Table IV. According to the results, FROG successfully detected
77% of the legitimate users, but only detected 41% of the
attackers. The low True Positive rate is due to the mitigation
algorithm. In the algorithm, previous detection results are not
used to detect attackers in future time windows to prevent
false detection from affecting future determinations. However,
because of this feature, the attackers are able to send their
interests as soon as a new time window arrives.

2) Attack mitigation effectiveness: The effectiveness of
FROG is evaluated by comparing the changes in the legitimate
users’ satisfaction ratio. The thresholds for mean and variance
of hop counts were 3.5 and 0.01 respectively.
Satisfaction ratio is calculated by dividing the number of
received Data packets with the number of sent interests.



TABLE IV: Confusion Matrix (Case A)

(a) Constant

True False
Positive 56% 43%
Negative 12% 88%

(b) Exponential Random

True False
Positive 41% 59%
Negative 23% 77%

(a) Constant

(b) Exponential Random

Fig. 3: Satisfaction Ratio Improvement (Case A)

Figure 3 shows the mitigation effectiveness of FROG. We
can observe that the legitimate users’ average satisfaction
ratio was improved by 20% for the consumers following the
constant traffic pattern and around 3% for the consumers using
the exponential traffic pattern. The reason the constant traffic
pattern had the highest increment is that consumers receive
Data packets constantly, meaning that the client-edge routers
were able to collect hop counts constantly. Therefore, the
client-edge routers had enough hop count data to determine
whether a consumer is an attacker or not. However, if the
consumers are following the exponential random traffic pattern,
the amount of data the client-edge routers receive varies, and
therefore the decisions made were inconsistent.

B. Case B: Setting different thresholds for each client-edge
router

In Case A, we set the same mean threshold for each running
FROG implementation. Next, in Case B, we set different
mean thresholds for different FROG implementation as an
example of an improvement of the algorithm. FROG monitors
the first few packets and use the collected hop count values
to calculate the mean hop count threshold. The hop count
variance threshold is set to 0.01, according to the results
yielded in Case A. The topology and other parameters used
for the simulation were the same as Case A.

TABLE V: Confusion Matrix (Case B)

(a) Constant

True False
Positive 67% 33%
Negative 32% 68%

(b) Exponential Random

True False
Positive 67% 33%
Negative 33% 67%

(a) Constant

(b) Exponential Random

Fig. 4: Satisfaction Ratio Improvement (Case B)

1) Attack detection accuracy: Table V summarizes the
results of the attack detection accuracy. From the results, we
can observe that there was a 10 to 26% improvement in the
True Positive rate while the False Negative rate decreased by
10 to 20%. Compared to Case A, setting the mean threshold
dynamically has affected the attack detection algorithm to
become more sensitive to the attack. Another interesting result
was that the detection accuracy became uninfluenced with the
consumer’s traffic pattern, unlike Case A.

2) Attack mitigation effectiveness: Figure 4 depicts the
result of the attack mitigation effectiveness. Compared to
the result from Case A, the average satisfaction ratio of the
legitimate users following the constant traffic pattern decreased
from 75% to 67%, while the exponential random traffic pattern
increased from 50% to 67%. The results of Figure 4 also show
that both constant traffic pattern and exponential random traffic
pattern had the same average satisfaction ratio, as expected
from the result of attack detection accuracy from Section V-B1.
Results show that the improved detection algorithm became
sensitive enough to detect an attack where consumers follow
the exponential random traffic, which the detection algorithm
in Case A failed to do. However, we can observe that the
improved detection algorithm was too strict against legitimate
users and limited some actions.



VI. DISCUSSION AND LIMITATIONS

FROG is a first step toward using consumer-side edge-
routers’ packet hop counts as a countermeasure to IFAs.
Looking forward, our detection mechanism could be improved
in several ways. We discuss some of them here. In addition
we also discuss FROG’s limitations.

• Fuzzy labels in the detection algorithm - Currently, FROG
labels consumers as attacker as soon as the mean and
variance values reach the threshold. It would be interesting
to add intermediate labels, such as a “suspicious” label. A
“suspicious” consumer would not be blocked right away.
Instead the router would pay closer attention to its behavior
and then decide whether to block it or not.

• Combination of different metrics - FROG uses only mean
and variance of packet hop count in its decisions. However,
different metrics could also be used. For instance, entropy
of packet hop counts and PIT utilization rates (as used in
[10]) could be used to improve FROG.

Our study assumes that the attackers do not have knowl-
edge of FROG. Therefore, one may ask the question: What
if the attackers know how FROG operates and adapts in an
attempt to hide itself? The simplest way to do this would be by
mixing interests that will be satisfied by caches in router CSs
with the malicious interests. This would decrease the mean
and increase the variance of the packet hop count, allowing
the attacker to behave as a legitimate user. The first way to
accomplish this is to resend an interest which was sent in the
past. Since there is a high chance of receiving a copy of the
content that is cached along the path, the mean hop count
may decrease. However, because the past interests tend to be
satisfied by caches on the same routers that are a few hops
away, the hop count variance would not increase. The second
way is to request popular contents within the network assuming
that popular contents are more likely to be cached. However,
this type of attack requires an adaptive real-time behavior from
the adversary. In particular, the adversary must be aware of 1)
which contents are popular; 2) how many hops away each
content is; and 3) if a cached content has been deleted or not.
The complexity of such adversary is much higher. Therefore,
in the worst case, FROG makes it harder to perform attacks.

VII. CONCLUSION AND FUTURE WORK

In this work we propose FROG: an approach for IFA de-
tection and mitigation. FROG uses packet hop counts collected
at the client-edge routers, where packet meta-data aggregation
can be done in a reliable and simple way. FROG was imple-
mented and evaluated in ndnSIM. Results show that, by using
packet hop counts, attackers can be separated from legitimate
users. Moreover, FROG improves legitimate users’ satisfaction
ratio by 3% and 25% by setting a static mean threshold
to every client-edge router. Additionally, an average of 14%
improvement is observed when a different mean threshold was
set to each client-edge router.

As for future work, we plan to investigate how FROG can
be extended to prevent attacks when the adversary is able to
control both, producers and consumers, i.e., collusive IFA. In
addition, it would also be interesting to investigate how to
apply FROG as a counter-measure for DGNEAs, in addition
to DGEAs.

ACKNOWLEDGMENT

The authors would like to thank Ivan Oliveira Nunes for
his suggestions towards improving the quality of the paper.

REFERENCES

[1] G. M. Brito, P. B. Velloso, and I. M. Moraes, Information-Centric
Networks A New Paradigm for the Internet. John Wiley & Son, Inc.,
2013.

[2] Named Data Networking (NDN), “Named Data Network-
ing: Executive Summary.” [Online]. Available: https://named-
data.net/project/execsummary/

[3] L. Zhang et al., “Named Data Networking (NDN) Project,”
NDN, Technical Report NDN-0001, 2010. [Online]. Available:
https://www.parc.com/content/attachments/named-data-networking.pdf

[4] T. Koponen et al., “A data-oriented (and beyond) network architecture,”
in Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications - SIGCOMM
’07, vol. 37, no. 4. ACM Press, 2007, p. 181.

[5] V. Jacobson et al., “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies - CoNEXT ’09. ACM Press, 2009, p. 1.

[6] “CCNx.” [Online]. Available: http://ccnx.org
[7] “CICN.” [Online]. Available: https://wiki.fd.io/view/Cicn
[8] E. G. Abdallah, H. S. Hassanein, and M. Zulkernine, “A survey of secu-

rity attacks in information-centric networking,” IEEE Communications
Surveys and Tutorials, vol. 17, no. 3, pp. 1441–1454, 2015.

[9] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang,
“Interest Flooding Attack and Countermeasures in Named Data Net-
working,” IFIP Networking, pp. 26–31, 2013.

[10] A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon: Mitigating
interest flooding ddos attacks in named data networking,” in 38th Annual
IEEE Conference on Local Computer Networks, Oct 2013, pp. 630–638.

[11] K. Wang, H. Zhou, H. Luo, J. Guan, Y. Qin, and H. Zhang, “Detecting
and mitigating interest flooding attacks in content-centric network,”
Security and Communication Networks, vol. 7, no. 4, pp. 685–699, apr
2014.

[12] H. Salah and T. Strufe, “Evaluating and mitigating a Collusive version
of the Interest Flooding Attack in NDN,” in 2016 IEEE Symposium on
Computers and Communication (ISCC). IEEE, jun 2016, pp. 938–945.

[13] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in named
data networking,” Proceedings - International Conference on Computer
Communications and Networks, ICCCN, 2013.

[14] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp, “Backscatter from
the data plane - Threats to stability and security in information-centric
network infrastructure,” Computer Networks, vol. 57, no. 16, pp. 3192–
3206, 2013.

[15] H. Dai, Y. Wang, J. Fan, and B. Liu, “Mitigate DDoS attacks in NDN
by interest traceback,” 2013 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), pp. 381–386, 2013.

[16] K. Wang, H. Zhou, Y. Qin, and H. Zhang, “Cooperative-Filter: Counter-
ing Interest flooding attacks in named data networking,” Soft Computing,
vol. 18, no. 9, pp. 1803–1813, 2014.

[17] T. N. Nguyen, R. Cogranne, G. Doyen, and F. Retraint, “Detection of
interest flooding attacks in Named Data Networking using hypothesis
testing,” 2015 IEEE International Workshop on Information Forensics
and Security, WIFS 2015 - Proceedings, no. 1, 2015.

[18] “ndnSIM: HopCountTag.” [Online]. Available:
http://ndnsim.net/2.3/doxygen/classHopCountTag.html

[19] “ndnsim.” [Online]. Available: http://ndnsim.net/2.4/
[20] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim 2.0:

A new version of the ndn simulator for ns-3,” NDN, Technical Report
NDN-0028, 2015.

[21] “ns-3.” [Online]. Available: https://www.nsnam.org/
[22] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP

Topologies With Rocketfuel,” IEEE/ACM Transactions on Networking,
vol. 12, no. 1, pp. 2–16, feb 2004.

[23] “Attack of Things!” [Online]. Available: http://netformation.com/level-
3-pov/attack-of-things-2

[24] “Heightened DDoS Threat Posed by Mirai and Other Botnets.” [Online].
Available: https://www.us-cert.gov/ncas/alerts/TA16-288A


