
Secure Fragmentation for Content Centric
Networking

Marc Mosko
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304
e-mail: mmosko@parc.com

Christopher A. Wood
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304
e-mail: cwood@parc.com

Abstract—Information Centric Networks (ICN), such as Con-
tent Centric Networks (CCNx) or Named Data Networks (NDN)
disseminate data using hierarchal names for each chunk of data,
where a chunk is roughly the size of an IP datagram. To secure
the named exchange, each chunk has a digital signature or a hash-
based name. Because these datagrams may be much larger than
a link MTU, there is a need for fragmentation, and to date several
hop-by-hop, end-to-end, and mid-to-end fragmentation schemes
have been proposed. Only one scheme, FIGOA, a cut-through
mid-to-end fragmentation scheme (i.e. without reassembly) claims
to be secure by using delayed authentication. We propose a
secure cut-through fragmentation scheme derived from FIGOA
that allows immediate validation. We also consider queuing and
timing issues that were not discussed in FIGOA.

Index Terms—CCN, fragmentation, delayed authentication,
selective retransmission

I. INTRODUCTION

Information-Centric Networking (ICN) is a family of emerg-
ing network architectures for transferring named data between
hosts; Content-Centric Networking (CCNx) and Named Data
Networking (NDN) are two closely related ICN derivatives
driven by the desire to solve many problems with today’s
Internet architecture. Unlike traditional IP-based networks
that use host addresses, CCNx treats content as first class
entities with unique names that can be routed through the
network. Consumers issue requests (interests) for content with
a particular name, and this request is routed to the producer
or a network entity (i.e., cache) that is capable of satisfying
the request. The corresponding content carrying a matching
name is then sent to the consumer along the reverse path.
This communication model enables content to be decoupled
from its place of origin, i.e., the producer, thereby enabling
content to be cached within the network to optimize bandwidth
use, reduce latency, and enable effective utilization of multiple
network interfaces simultaneously.

Since the designs of both CCNx and NDN separate con-
tent from its place of origin, consumers and other network
entities, e.g., routers and forwarders, need a way to verify
the authenticity of content before it is used in a meaningful
way. Content objects therefore carry a digital signature that
is used to perform this verification check. If a signature is
not provided, the authenticity can be verified by checking
the cryptographic hash digest of the content object against
an expected value. Regardless of the mechanism by which

authenticity is ascertained, it may always be the case that the
size of a particular content object, will exceed a link MTU.
This means that content objects must be fragmented1.

To date, several hop-by-hop, end-to-end, and cut-through
fragmentation schemes have been proposed. However, in this
work, we only consider hop-by-hop and cut-through fragmen-
tation. End-to-end fragmentation is unrealistic without proper
restrictions on the maximum length of an interest or content
object name (see [1] for an informal proof of this claim). Out
of all relevant fragmentation protocols, only one – FIGOA
[1] – claims to be secure by virtue of its usage of delayed
authentication. However, it has several drawbacks. Signature
verification is delayed until the last fragment is received. This
is because the signature is dependent on the hash computed
from the entire message. FIGOA does not enable hash-based
content retrieval without explicitly include the name of the
message (content object) in every fragment. Due to unbounded
name lengths, this is not a viable solution.

Inspired by FIGOA, we present a new cut-through fragmen-
tation protocol for CCNx called Named Network Fragments
(NNF). The NNF protocol provides equivalent security to
FIGOA but overcomes the aforementioned performance and
design issues. Furthermore, NNF provides the ability for
consumers or routers to selectively request and retransmit frag-
ments of a content object chunk. In addition, the NNF packet
format, described in Section IV, could be used to supplement
or replace the existing CCNx content object format. In this
way, content objects become fragments and fragments are
content objects. This uniformity should greatly simplify future
protocols and network (router) behavior.

The rest of this paper is organized as follows. Section II
presents related work in ICN architectures, including those
discussed by the CCNx and NDN communities. Sections
III and IV describe the NNF protocol and packet formats.
Examples of how NNF would fragment content objects are
presented in Section V, and the security of the protocol is
analyzed in Section VI. Finally, we conclude with an analytical
model and preliminary results on the NNF implementation in
Sections VII and VIII.

1Interest messages may also need to be fragmented. See Section II for more
details.

1

II. RELATED WORK

Fragmentation is a necessary part of any ICN architecture
and protocol. The current NDNLP link layer protocol in NDN
supports hop-by-hop fragmentation in NDN. Fragments only
carry sequence numbers that allow for, and mandate, interme-
diate reassembly if signature verification is required [2], [3]. It
does not use cut-through forwarding due to its implementation
complexity and the barriers incurred by carrying the parent
packet name in each fragment [3].

Ghali et al. [1] proposed the cut-through fragmentation
protocol FIGOA to alleviate the performance impediments
caused by intermediate reassembly. The details of this scheme
are outlined in the following section. For now, we simply note
that its use of delayed authentication effectively circumvents
the need for intermediate reassembly prior to fragmentation.
FIGOA was only implemented in the ndnSIM simulation
software for a performance assessment, and, to date, has not
been adopted by any of the major ICN designs.

Standards for fragmentation in CCNx have recently been
proposed in [4] and [5]. PARC has proposals and working
implementations for both end-to-end and hop-by-hop fragmen-
tation. The latter was originally implemented in the CCNx
0.8x code [6]. This protocol was updated to include support
for hop-by-hop fragmentation. Furthermore, multilink PPP
[7] was adopted to ICN so as to support multiple different
fragmentation protocols with the same encoding. The PARC
end-to-end fragmentation protocol presented in [4] uses MTU
discovery in interest messages so that the producer (end-host)
can fragment the content object response to the appropriate
size. With symmetric forwarding routes, this prevents any in-
termediate nodes performing re-fragmentation. Security issues
beyond link (authenticated) encryption are not discussed in
either proposal.

III. NAMED NETWORK FRAGMENTS

We now describe how NNF follows from FIGOA. For
reading ease, and where appropriate, we use notation drawn
from [1] where COn is a raw (unsigned) content of total
size n bits and CO

n
is the signed version of COn. The

secure fragmentation scheme FIGOA [1] operates by sending
fragments in multiples of the hash block size in each packet,
along with a byte offset and the intermediate state (IS) of
the hash function up to that point. For example, the first
fragment carries a byte offset of 0, up to kb blocks of data
(where b is the hash block size) such that it fits within the
packet’s MTU, and the hash’s initialization vector (IV). The
second fragment carries a byte offset kb, the next kb blocks,
and the intermediate state of the hash computation from the
first block. The final fragment may carry a short payload
under b bytes long and the hash function should operate as
natural for the given hash function (e.g., pad with zeros). This
creates an implicit hash chain, because a node can securely re-
assemble the pieces based on the calculated IS and the header
of a fragment. FIGOA allows intermediate re-fragmentation
because an intermediate node can reduce the payload from
kb to some (k − j)b blocks and then create a subsequent

fragments of jb blocks with the appropriate starting byte offset
and intermediate state; this reduction in fragment size still
maintains the hash chain.

While the FIGOA design is an interesting solution when
content is requested by name only or by name and KeyId,
it does not help when content is requested by a hash name.
This is because the hash name is over the entire signed
message CO

n
. It is not possible to match a fragment to

a hash based interest. The FIGOA implementation solves
this problem by including the ContentDigest parameter as a
field in the ContentFragment packet. The ContentDigest is
supposed to match what would be the computed hash of CO

n

to allow forwarding on hash based names without actually
computing the entire hash. This enables a router to match
fragments of a larger packet against the hash name provided
in an interest. However, this allows the injection of malicious
packets because it defers the verification to the end of the hash
chain.

Another problem with FIGOA is that signature verification
(if performed) is delayed until the final fragment – the hostage
fragment – is received. This is because the hash computation
based on the final chain, which should equal the ContentObjec-
tHash field provided in an interest, is the input to the signature
verification procedure. Also, the ValidationInformation field of
the fragmented content object, which is located at the end of
the message, contains the KeyLocator necessary to identify
the signature verification key. Since the final fragment is not
forwarded until the signature is verified, the overall throughput
is necessarily extended by the cost of the signature verification
procedure. A better solution would deliver the signed fragment
first to amortize the signature verification overhead while
fragments are being delivered.

To this end, we present the secure Network Named Frag-
ments (NNF) fragmentation protocol. NNF is designed to over-
come the FIGOA shortcomings using more efficient signature
verification and selective retransmit of individual fragments.
We outline the NNF design in the following sections. NNF
provides the following benefits over FIGOA:

• Immediate signature verification – The first fragment
carries a signature, so the overall security context may be
established immediately without needing to reassemble
all fragments. Observe that if the signature can be verified
upfront, the application can begin verification while the
reset of the content is received, amortizing signature
verification time while providing partial use of fragments
to applications, e.g., to pipe data through a decoder or
write it to a file.

• Unbounded content length – The overall length of the
fragmented content is not limited to a specific length, so
large payloads could be conveyed. NNF allows for very
long content with a known digest or for segments of live
stream content, where the digest is not known until the
end of the segment.

• Selective retransmission – Each fragment of an NNF
fragment stream is uniquely identified by the state {Name,
OverallDigest, PayloadOffset, IntermediateState }, and

2

Fragment := FixedHeader *OptionalHeader NamedFragment
Payload [ValidationAlg ValidationPayload]

FixedHeader := <as per CCNx 1.0 spec>
OptionalHeader := <as per CCNx 1.0 spec>
NamedFragment := <see below>
Payload := <blocks of original content>
ValidationAlg := <as per CCNx 1.0 spec>
ValidationPayload := <as per CCNx 1.0 spec>

Fig. 1. ABNF Fragment specification

those items can be encoded as part of the Name of
the Fragment, so each fragment could be selectively
requested.

• ContentObject Replacement – FIGOA encapsulates an
existing ContentObject (or “Data”), NNF could be used
as a ContentObject replacement. It could encapsulate a
large ContentObject or it could encapsulate raw payload
without the inner encapsulation.

• Hash named fragment chains – The head-of-chain
fragment can be explicitly named in an Interest, which
enables selective repeat, and it can also be explicitly
named with a hash-based name for secure hop-by-hop
Interest processing even with fragmentation.

IV. NNF PACKET FORMAT

The fragment encapsulation mechanism given in [5] enables
any fragmentation mechanism to be implemented and encoded
on the wire. NNF uses this mechanism to encode individual
fragment packets. A fragment is a CCNx message with a fixed
header packet type of PT FRAG and uses the extended format.
The MessageType is T NNF. The fragment header (which is
part of the T NNF TLV) contains several fields to aid in the
reconstruction and verification of the fragment stream.

Fig. 1 specifies the ABNF of a fragment in the CCNx 1.0
format. In the FixedHeader, the PacketType is set to PT FRAG
and the PacketLength is the length of this immediate fragment,
which is limited to the MTU size (maximum 64 Kb). the
FragmentData is part of “signed information” of the packet,
and would be covered by an optional ValidationAlg and
ValidationPayload, if desired. For example, the first fragment
could have a complete signature that is immediately verifiable,
which creates the root of a trusted hash chain for the remainder
of the fragments.

Fig. 2 shows the details of the NamedFragment token. There
are five types of NamedFragments.The first two types, Frag-
mentStart and FragmentData, are used when the OverallDigest
is known in advance, such as when fragmenting a known file.
The last three – SegmentStart, SegmentData, SegmentEnd –
are for use with segmented data streams, such as live streams,
where an unterminated data stream is transmitted in segments
of a known length but with a deferred digest computation.

Fragmented data begins with a FragmentStart message that
indicates the CCNx Name, OverallLength, and OverallDigest.
It is usually in a CCNx 1.0 packet with a signature, so there is
an immediate trust environment for the subsequent hash chain.
If the FragmentStart is signed, then it cannot be re-fragmented

NamedFragment := (FragmentStart | FragmentData |
SegmentStart | SegmentData | SegmentEnd)
ChainData

FragmentStart := Name [DigestAlg] OverallLength
OverallDigest

FragmentData := [Name] OverallDigest
SegmentStart := Name [DigestAlg] OverallLength

SegmentID
SegmentStart := [Name] SegmentID
SegmentEnd := [Name] SegmentID OverallDigest
ChainData := PayloadOffset InterState
Name := <as per CCNx 1.0 spec>
OverallLength := Integer
SegmentID := 1*OCTET
OverallDigest := 1*OCTET
DigestAlg := SHA256 / <others>
PayloadOffset := Integer
InterState := 1*OCTET

Fig. 2. ABNF NamedFragment

F1 F2 F3 … Fn

signature

hash chain IV

hash chain final digest

Fig. 3. A trusted NNF hash chain rooted at a signed fragment – F1.

in network without breaking the signature, so often this packet
has no Payload or only a small number of payload blocks such
that it fits in minimum MTU size. Subsequent fragments are
carried in FragmentData packets that do not need to be signed
so could have a maximum sized Payload.

Segmented content fragments are for delay sensitive data or
live streams where one wishes to begin fragmented delivery
before the OverallDigest is known. The original fragment
creator generates a SegmentID, such as a random number, for
the current segment and publishes fragments until the segment
ends. In the last segment, the publisher ties together the
SegmentID and OverallDigest in a signed object. This could
be a tail object and not carry any payload and be delivered
after the processing delay of calculating the OverallDigest.
Because the tail object is signed, it should be as small as
possible because it cannot be re-fragmented.

A high-level depiction of this hash chain is shown in figure
3.

These fields are defined as:
• Name: The CCNx name of the payload. The Name is

optional in all fragments if supporting CCNx Nameless
Objects, otherwise it must appear in at least the first
fragment.

• OverallLength: The total length of all the fragmented
payload.When used with segmented content, it is the
length of the current segment, not the total stream length.

• OverallDigest: The digest of all the fragmented
payload.

3

• SegmentID: A SegmentID is used when the Over-
allDigest is not known when the fragmentation begins.
It is used to defer the calculation of the OverallDigest
until the end of the segment.

• DigestAlg: The digest algorithms for OverallDigest,
assumed SHA-256 if not present. Taken from a specified
enumerated set.

• PayloadOffset: The byte offset where this fragment
begins.

• IntermediateState: The IS value unto this payload.
An intermediate node may only re-fragment if it understands

DigestAlg. Thus, we specify DigestAlg from an enumerated set
such that implementations can comply to a specific standard.

A. Unbounded Length Fragments

The OverallLength field is not limited in size. In a normal
ContentObject, the Payload TLV length is limited to 64 KiB,
but in a fragmented content object, it is essentially unbounded.
One could transfer a large file, for example, as one stream.
In normal use, however, we expect that traditional CCNx
chunking will split content in to nominally sized chunks and
then fragment each chunk. The chunks, using NNF, may now
be any size not limited by the 64 KB CCNx 1.0 packet length.

B. Selective Retransmission

Any standard Link recovery protocol between pairs of
routers can be used to retransmit individual fragments if they
are dropped or arrive corrupted. However, if, for example, a
consumer wishes to identify a subset of fragments to retrieve
for a single content object, perhaps because they were lost
locally, the consumer should be able to ask for individual frag-
ments instead of the entire content object again. To accomplish
this, each fragment must be uniquely addressable.

In NNF, each fragment is uniquely identified by the
name {Name, OverallDigest, PayloadOffset, IntermediateS-
tate}, where Name is allowed to be empty. In one encod-
ing, the OverallDigest, PayloadOffset, and IntermediateState
are represented as part of the Name, for example: /parc.
com/movie/alto.mkv/OD=123abc/PO=4096/IS=653efa. In ef-
fect, this names each fragment and enables selective retrans-
mission of individual fragments. The first fragment still carries
only the original name /parc.com/movie/alto.mkv, because a
requester would not necessarily know the OverallDigest.

It is also possible for chains of fragments to be selective
requested. This is done by providing the name of the frag-
ment and an additional payload size. For example, /parc.com/
movie/alto.mkv/OD=123abc/PO=4096/IS=653efa/PS=8192. If
fragments are individually 1024B, then this would return a
chain of four fragments starting at byte offset 4096. If instead
the fragment name was issued as /parc.com/movie/alto.mkv/
OD=123abc/PO=4096/IS=653efa/PS=7680, the last (fourth)
fragment in the returned chain would need to be re-fragmented
to 512B. An example of this re-fragmentation is shown in
Figure 4. One important caveat for this re-fragmentation is that
the first fragment must remain intact so that interest matching
can be done correctly (see the next section).

F1 F2 F3 … Fn

0 1024 2048 3072 1024*(n-1)

F2 F3

F2

PO=1024, PS=1024

PO=1024, PS=2048

F2

PO=1024, PS=1536

F3

F2 Fn

PO=1024, PS=1024*(n-2)

…

Original Fragmented ContentObject

Ch
ai

n
1

Ch
ai

n
2

Ch
ai

n
3

Ch
ai

n
4

Fig. 4. NNF selective retransmit with refragmentation.

C. Intermediate node processing

An intermediate node requires the first fragment to match
a PIT entry and begin cut-through forwarding. All inter-
mediate nodes will match the first fragment based on its
Name, KeyId, and ContentObjectHash as is normal
for a CCNx 1.0 forwarder. The ContentObjectHash is
computed only over the first fragment. Once the first fragment
is verified, the node may begin forwarding other fragments
along the same PIT entry. This is different from FIGOA,
where the ContentObjectHash in an interest matches the
OverallDigest value, which can only be verified once all
fragments have been processed. Note that this requirement for
NNF means that the first fragment cannot be re-fragmented
by intermediate nodes in the network.

An Intermediate node will maintain a PIT entry reverse
path until it has forwarded OverallLength bytes via the PIT
entry. Because selective retransmissions happen in a different
namespace than the first fragment name, they will not count
against the PIT entry. Also, an intermediate node may choose
to validate the fragment stream via signature verification (as
explained above), similar to the method used in FIGOA.

To support selective retransmission, router and forwarder
content stores must be able to parse and interpret individual
fragment names, and re-fragment if necessary. Algorithms 1
and 2 show the actual fragment and PIT logic necessary to
support selective retransmission as described above.

Alg. 1 generally follows the processing steps in FIGOA.
It is not necessary to cache any fragments – the reassembly
buffer Buffer only stores a chain of entries with { CurrentIS,
NextIS, PayloadOffset, PayloadEnd }. The entries are stored
in order of PayloadOffset. To begin, we create an initial buffer
entry with the SHA-256 initialization value and PayloadOffset
of 0 and PayloadEnd of 0. From there, all received fragments
will form a chain. The next four rules are as per FIGOA: the
first rule stores a singleton without predecessor or successor,
the second rule stores a fragment that continues a previous
fragment, the third rule stores a fragment that precedes a
fragment, and the fourth rule stores a fragment in between
two existing fragments. Any time we store a fragment and it
verifies, we update the “in-order” verified length so we know
how many bytes have verified in the hash chain. Once we

4

have verified OverallLength we have received all fragments
and should verify the OverallDigest. If the current fragment
was the one that verified the OverallDigest, we locally mark
this packet as the “last fragment” to indicate that the PIT may
clear its state.

Algorithm 1 Fragment Logic
1: Input: Content fragment with {Name, OverallDigest, Payload-

Offset, IntermediateState (IS)}
2: if Buffer[OverallDigest] does not exist then
3: Create with nextInterState = SHA256 Initialization value.
4: end if
5: Compute IS′ = h(IS, payload).
6: if Previous fragment with (PayloadEnd + 1) = current Payload-

Offset nor next fragment (with PayloadOffset = PayloadEnd +
1) is in Buffer. then

7: Store the packet.
8: else if Previous fragment is in Buffer, but next fragment is not

then
9: Verify that previous fragment IS′ = IS, otherwise drop.

10: else if Next fragment is in Buffer, but the previous is not then
11: Verify that IS’ = next fragment’s IS, otherwise drop.
12: else if Both previous and next are in Buffer then
13: Verify that the hash chain is continuous, otherwise drop.
14: end if
15: Update the in-order verified length
16: if In-order verified length equals the OverallLength then
17: Verify the OverallDigest. If verified, mark as “last fragment”

so the PIT will clear state. Otherwise, drop.
18: end if

Alg. 2 shows the PIT table processing logic. If fragments
are received in order, then the first fragment will have a
name that matches an existing PIT entry. We then create a
new PIT entry by OverallDigest and remove the PIT entry
by name. Subsequent fragments output by Alg. 1 will match
on OverallDigest. However, fragments may not necessarily
arrive in order, so this leads to several more conditions in
the algorithm. The block at Line 4 tests if a PIT entry by
OverallDigest exists, and if so forwards along that PIT entry.
The block at Line 8 checks if the fragment has fragment
state in the name, in which case it may be a retransmission
and should be matched against its own PIT entry by name.
The block at Line 13 will try to create the PIT entry by
OverallDigest if the previous lookup did not succeed. The
block at Line 21 is the same as at Line 13, except it handles
the case of a named fragment arriving before a chunk named
fragment. A named fragment has the fragment state in the
name. In this case, we strip the fragment state from the name
and proceed as for a chunk named fragment.

V. EXAMPLES

A. FragmentData

A file is to be published as FragmentData. It has a Over-
allLength of 10000 and a OverallDigest of 0x0011223...
(32-byte SHA256). The IntermediateState (IS) is set to the
32-byte initialization vector for SHA-256.

The first object has the Name lci:/parc.com/pubs/
spec1.pdf/OD=0x0011223.../PO=0/IS=0x6a09e66... with

Algorithm 2 PIT Logic
1: Input: Content fragment with {Name, OverallDigest, Payload-

Offset, IntermediateState (IS)}
2: CaseA = False
3: CaseC = False
4: if OverallDigest entry is in the PIT then
5: Forward and remove the PIT entry after the last fragment (it

is marked by the Fragment Logic – see Algorithm 1)
6: CaseA = True
7: end if
8: if The fragment has a Name with OverallDigest, PayloadOff-

set, IS state in it then
9: if A PIT entry with that name exists then

10: Treat as retransmission request and forward
11: end if
12: end if
13: if CaseA = False and the fragment has a Name then
14: if A PIT entry with that name exists then
15: Create a PIT entry by OverallDigest with same reverse

path.
16: end if
17: Forward on that PIT entry as above
18: Remove the PIT entry by name
19: CaseC = True
20: end if
21: if CaseC = False and the name has {OverallDigest, Payload-

Offset, IS} state in it then
22: if A PIT entry with name but not the state exists then
23: Proceed as in block line 13.
24: end if
25: end if
26: Otherwise, drop the fragment.

a OverallLength of 10,000 and a Payload of the first
1000 bytes of the file. The encoded length of the name is
114 bytes due to the two 32-byte values plus other overhead.
Reserving room for an RSA signatures and other fields means
the first packet will be approximately 420 bytes of overhead,
so it could carry 13 blocks of 64-bytes (832 bytes), for a
total packet length of 1252 bytes.

The subsequent blocks may carry similar names, with the
IS updated per block for the hash chaining and the PacketOff-
set for the byte location.Because these packets are not signed,
we only have 130 bytes of overhead and can send maximum
acceptable fragments (say 1500 bytes) because they could be
re-fragmented in flight. This would allow 21 blocks of 64 bytes
(1344 bytes) per fragment.We would need 7 such packets to
finish the 10,000 bytes of payload.

Having a name in each FragmentData packet means that
a receiver could selectively request any fragment. One could
save 33 bytes per packet only including the necessary Over-
allDigest and PacketOffset and InternState. As this file is only
8 packets, selective retransmit might not be that important, so
one could possibly save one packet by not using a full name.

B. SegmentData

A live stream will send a 1Mbps feed that will digest once
per second. The OverallLength will be 125,000 bytes.As in
the previous example, the name will be, for example, 120

5

bytes.The name will carry a SegmentID (for example a 32-
byte random number) instead of an OverallDigest.

Assuming the first and last objects are signed, then each
segment will take 94 packets (1 start, 92 middle, 1 end). This
assumes we have included a full name in each fragment so
one could selectively retransmit any one fragment. We could
get higher efficiency if, for example, we only included a full
name every 10 fragments.

VI. SECURITY ANALYSIS

NNF provides the same security guarantees as FIGOA by
virtue of how individual fragments are authenticated. Recall
that NNF draws upon the FIGOA delayed authentication
mechanism by individually fragments with a single signature
verification and corresponding hash chain. In other words, the
first fragment in a NNF-fragmented packet contains a signature
generated from the overall digest of the sequence of fragments,
as well as this overall digest. Procedurally, the verification
procedure for such a NNF-fragmented packet is as follows:

1) The signature of the overall digest, provided in the first
fragment, is valid.

2) The hash chain of fragments belonging to the same
packet is valid. That is, the intermediate hash digest
provided in each fragment matches the intermediate state
of the hash digest computed up to that fragment.

3) The hash digest of the final fragment is equal to the
overall digest provided in the first fragment.

The algorithm for performing step (2) of the verification pro-
cedure is provided in [1]. Steps (1) and (3) of the verification
procedure are unique to NNF and their implementation is
provided in Section IV.

Security, with respect to authenticity of the entire frag-
mented packet, is thus guaranteed by the following simple
facts: (1) the packet signature and overall digest needed for
verification are provided in the first fragment, and (2) the
overall digest is computed and checked for equality before
accepting the packet as valid. Thus, if the signature on the
overall digest is valid and the computed overall digest equals
the OverallDigest in the first fragment, the overall packet is
deemed valid. The security of NNF therefore reduces to the
security of the underlying hash function and signature scheme,
just as with FIGOA. We refer the reader to [1] for a formal
proof of security.

Note that, for segment fragments which provide “check-
point” overall digests, security is guaranteed by a similar
argument. The subtle difference is that the overall digest is pro-
vided in the final SegmentEnd fragment. The verifier merely
ensures that the overall digest computed on the (stream)
segment (for a particular segment ID) matches the overall
digest in the SegmentEnd fragment, and that the signature
provided with this last fragment is valid using this overall
digest as its input. Verifying stream segments more closely
follows the delayed authentication procedure of FIGOA.

VII. ANALYTICAL MODEL

In this section we present a simple model to capture
the expected number of fragment retransmissions sent using
NNF, FIGOA, and hop-by-hop fragmentation. In our model
we consider the time it takes for a fragmented packet to
be transmitted from a producer to a consumer over a path
topology of n links. That is, interests from a consumer Cr will
traverse a path of n links to producer P , and the content object
responses will traverse back to Cr along the backwards path.
Assume that each link Li on this path has a fixed probability
of loss pi. The probability of failure pf on any link for any
fragment of a content object is pf = 1−

∏n
i=1(1− pi).

Now, consider the transmission of a content object C that
is composed into k fragments, and assume that tf is the time
to transmit a single one of these fragments along the entire
path of n links, and that tl is the time to transmit a fragment
over a single link. Thus, tf = ntl. Without any failure, and
assuming that each fragment for NNF, FIGOA, and the hop-
by-hop fragmentation schemes take the same amount of time2,
the time t to transmit C is t = tf +(k− 1)tl = (n+ k− 1)tl.

The time it takes to transfer a single fragment of a content
object tf changes if links are lossy. Specifically, whenever a
single failure occurs, the entire content object (and all of its
fragments) must be retransmitted. For a content object of k
fragments, the time to transmit C, tFIGOA, is

tFIGOA = (n+ k − 1)tl + kpf
(n+ k − 1)tl

1− pf
.

The first term captures the time it takes all fragments to
be transmitted without any packet loss. In the event that
at least one single loss occurs for any of the k fragments,
the entire packet must be retransmitted again with success
probability (1 − pf). According to the FIGOA protocol, if
packet losses occur at any link, then the router will not be
able to authenticate the entire content object. Consequently,
the consumer will not receive the entire packet and must
retransmit the interest. For simplicity, we do not take this
interest retransmission time into account. Note that the time
for hop-by-hop re-fragmentation would be at least as long as
FIGOA, since the transmission time also incurs the cost of
intermediate node processing.

Conversely, with NNF, where selective retransmission is
supported, this time tNNF is

tNNF ≤
(n+ k − 1)tl

1− pf
.

This comes from the fact that NNF can be modeled as the
standard selective repeat ARQ protocol [8], [9]. Also, note
that this is an upper bound because it assumes that individual
retransmission occur from packet losses in the link adjacent
to the consumer. Note that routers may potentially selective
retransmit interests for individual fragments to avoid this
worst-case delay. However, this is not mandated.

2This is merely for analytical simplification. In reality, fragment sizes and
therefore the number of fragments for a given content object may be different.

6

0	

1	

2	

3	

4	

5	

1280	 2560	 3840	 7680	 16640	 33280	 Av
er
ag
e	
Ch

un
k	
Ti
m
e	
(m

se
c)
	

Chunk	 Size	 (bytes)	
	

6	 hops	 0%	 loss	 rate	

HopByHop	

NNF	

Fig. 5. Chunk times for NNF and hop-by-hop fragmentation over a 6-hop
topology with lossless links.

VIII. EXPERIMENTAL EVALUATION

In this section we compare the performance of NNF against
hop-by-hop fragmentation. We implemented the NNF protocol
in the CCNx 1.0 transport stack and Metis forwarder. The
evaluation was done on three Dell dual CPU 16-core Intel
Xeon E5-2660 systems connected via 10G links. We created
a 6-hop network by routing between 7 Metis instances over
trunked vlans. We used raw Ethernet encapsulation on the
links. We ran the experiments 3 times and averaged the results.

The first set of experiments shown in Figure 5 have a 0%
loss rate and the second set of experiments in Figure 6 have
an overall 1% loss rate (0.167% per link). Each experiment
transfers a 10M file chunked in to 1280, 2560, 3840, 7680,
16640, or 33280 bytes. We use these values because the
fragment size (1280) must be a multiple of 64 and the chunk
size a multiple of the fragment size in our implementation.
The server pre-generates all chunks and fragments, so the
measured time does not include any significant computation
on the server. Each NNF OverallDigest is for a single
chunk (not segment), so they are independent chunks. A single
client transfers each chunk serially and measures the latency.
We compute the average “chunk time” by diving the total
latency by the number of chunks. The client uses a fixed 2ms
retransmission timeout.

The results of this experiment are shown in Figure 5. The
results from a similar experiment with lossy experiments are
shown in Figure 6. Our results indicate that NNF outperforms
hop-by-hop fragmentation with increasing likelihood as the
chunk size of content increases. In other words, NNF provides
better latency performance as the number of fragments for a
content object increases. Hop-by-hop fragmentation performed
slightly better than NNF in cases where small chunk sizes
resulted in only 1 or 2 fragments. This is likely due to the
fact that the hop-by-hop protocol accumulates less per-hop
delay than computing the SHA-256 digest on each fragment.
Moreover, we used an unoptimized C implementation of SHA-
256, which further contributed to this result.

0	

1	

2	

3	

4	

5	

1280	 2560	 3840	 7680	 16640	 33280	 Av
er
ag
e	
Ch

un
k	
Ti
m
e	
(m

se
c)
	

Chunk	 Size	 (bytes)	
	

6	 hops	 1%	 loss	 rate	

HopByHop	

NNF	

Fig. 6. Chunk times for NNF and hop-by-hop fragmentation over a 6-hop
topology with p = 0.01 lossy links.

IX. CONCLUSION

In this paper we presented Named Network Fragments
(NNF), a new cut-through fragmentation protocol that pro-
vides security guarantees of FIGOA while offering improved
performance. NNF is unique in that it enables (a) fragments
to be selective retransmitted, (b) unbounded content object
lengths, (c) and immediate signature verification. Furthermore,
the NNF packet format could be used to entirely replace the
existing content object format. Our analytical model indicates
that, in the presence of loss, NNF outperforms hop-by-hop
fragmentation due to the ability to selective retransmit lost
packets instead of retransmitting the entire message. Our
experimental comparisons support this result. Given the utility
and efficiency of NNF, it is likely that this protocol will be
adopted as the standard fragmentation protocol in CCNx 1.0,
and possibly even a replacement for the existing Interest and
Content Object packet format.

REFERENCES

[1] Cesar Ghali, Ashok Narayanan, David Oran, Gene Tsudik, and Christo-
pher A Wood. Secure fragmentation for content-centric networks. arXiv
preprint arXiv:1405.2861, 2014.

[2] Junxiao Shi and Beichuan Zhang. NDNLP: A Link Protocol for NDN.
[3] Packet Fragmentation in NDN: Why NDN Uses Hop-By-Hop

Fragmentation. http://named-data.net/wp-content/uploads/2015/05/
ndn-0032-1-ndn-memo-fragmentation.pdf, 2015.

[4] M. Mosko. CCNx End-To-End Fragmentation, 2015.
[5] M. Mosko. ICN Hop by Hop Fragmentation, 2015.
[6] CCNx Binary Encoding (ccnb), 2012.
[7] B Lloyd, D Carr, G McGregor, and K Sklower. The ppp multilink protocol

(mp). 1994.
[8] Alberto Leon-Garcia and Indra Widjaja. Communication networks.

McGraw-Hill, Inc., 2003.
[9] Miltiades E Anagnostou and Emmanuel N Protonotarios. Performance

analysis of the selective repeat arq protocol. Communications, IEEE
Transactions on, 34(2):127–135, 1986.

7

