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Abstract—Content-centric networking (CCN) is a network
architecture for transferring named data from producers to
consumers upon request. This shifts security from that of a
connection or channel to the content itself. There remains,
however, many critical uses for the traditional client-server
communication model with secure sessions. For instance, in
many CCN applications, producers need a way to transfer key
material or secret information to consumers. Not only does
caching this content fail to serve multiple consumers, encrypting
it under long-term, static keys does not afford them any forward
secrecy. Consequently, there is a real and present need for a
CCN-friendly protocol whose security properties meet or exceed
similar transport security protocols in IP networks. In this
paper, we present the design and implementation of the CCNx
Key Exchange Protocol – CCNxKE – the first protocol design
for bootstrapping encrypted service-centric sessions in CCN.
We compare our design to that of existing IP-based transport
security protocols to highlight important differences, discuss
several important use cases for CCNxKE and secure sessions in
CCN, and present a preliminary performance assessment. Our
experiments indicate that session encryption adds, on average, a
30% data transfer latency compared to unencrypted traffic using
our prototype implementation.

I. INTRODUCTION

Information-centric networking (ICN) architectures such
as Content-Centric Networking (CCN) define the fundamental
unit of communication as named and addressable data. Rather
than moving data in the network by addressing the endpoint
to which it should be delivered, data is obtained (transferred)
by explicitly requesting it. Such a request, or interest, carries
a data name and is routed based on this name towards some
authoritative source or producer for the data. Once the request
is satisfied, the response, called a content object or content,
is forwarded along the requests’ reverse path towards the
consumer(s).

Since data is identified by a name, routers may oppor-
tunistically cache content object responses so as to satisfy
future requests for the same content. This is done to reduce
upstream bandwidth consumption and minimize the consumer
data retrieval latency. As a consequence of separating data from
its origin, there must be some means by which consumers
can verify the authenticity of content. Content objects are
authenticated in one of two ways: (1) they either carry some
form of authenticator, such as a Message Authentication Code
(MAC) or digital signature, which allows the recipient or an
intermediate node with the appropriate context information
to verify the content, or (2) they are requested with and
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subsequently verified by their cryptographic fingerprint (i.e.,
hash).

In CCN, confidentiality, unlike integrity and authenticity,
has long been treated as an application-layer access control
problem (see Section II-B). It is not a feature of the network
protocol. The majority of existing approaches to provide
content confidentiality are based on content encryption – the
core idea of which is to encrypt content under some key
such that only authorized consumers can obtain the decryption
key(s) and thus consume the content. This approach has one
crucial property that sets it apart from the transport security
protocols that are ubiquitous in modern IP-based applications:
Two legitimate requests for the same encrypted content from
two authorized consumers will yield an identical response from
the network if they are satisfied from a cache. This means that
an adversary can link both the requests and responses together
and therefore conclude that two consumers asked for the same
data. This utility, if coupled with auxiliary information about
the data that is requested, can lead to privacy breaches [1], [2].

Beyond this correlation issue, we claim that there is a
clear and present need for data protected by session-based,
ephemeral encryption keys in CCN. Exemplary applications
that would benefit from this include online banking, payroll,
and e-commerce applications wherein sensitive transactions
or information should only be viewable by the endpoints
engaged in the exchange of data. Moreover, this type of
secure session protocol is often necessary to bootstrap the
aforementioned encryption-based access control systems by
securely transferring keying material.

For these reasons, we advocate for a session-based en-
cryption protocol which offers the same benefits of modern
protocols such as TLS 1.3 [3], QUIC [4], [5], and DTLS
1.2 [6]. Not only would such a protocol enable applications
which deal with sensitive data and require forward-secrecy
[7], which is the property that past traffic is protected in
the event that long-term private keys are compromised, but
it would also fill a void that has existed in CCN and related
ICN architectures. To this end, we present the CCNx Key
Exchange Protocol – CCNxKE – and show how it can be
used to create secure sessions in CCN. CCNxKE allows a
consumer to establish a shared, forward-secure secret with a
name prefix, i.e., a service, which can then be used to bootstrap
a secure session with said service. Importantly, it is not peer-
to-peer as in IP-based transport security protocols. CCNxKE
exploits the native multicast and authenticity properties of
CCN to create sessions associated with a routable prefix. This
allows the network to transparently handle issues such as load
balancing sessions across different service endpoints. It also
allows nodes participants to migrate freely around the network
without continually tearing down and restarting sessions.

To execute CCNxKE, the consumer does not require a
routable prefix for itself. CCNxKE will authenticate the ser-
vice, similar to TLS, and may optionally authenticate the
consumer. (For bi-directional traffic, the consumer may provide
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its routable prefix, if it has one, to allow interests to flow both
ways.) Additionally, CCNxKE borrows ideas from Kerberos
[8] to allow the service to migrate a session to another name
that actually provides data, such as a trusted content replica or
repository. This allows client client authentication and autho-
rization to be decoupled from the service that provides data.
(See [9] for more details of this approach.) Lastly, CCNxKE
introduces a novel technique to mitigate volumetric denial-of-
service (DoS) attacks on a service in CCN.

From a performance perspective, CCNxKE is designed to
minimize the number of rounds required in safely establishing
a shared key to begin sending application data. (Here, appli-
cation data can be sent from the producer to the consumer
in content objects or, if needed, from the consumer to the
producer in interests.) In the worst case, it requires two round-
trip-times (RTTs) but in most cases only one RTT is required
before sending application data.

We implemented CCNxKE with encrypted session support
in the CCNx software stack [10] to assess its overhead. Our
experiments indicate that session encryption adds, on average,
a 30% data transfer latency compared to unencrypted traffic
using our prototype implementation.1

Collectively, our contributions are as follows: (i) the first
forward-secure key exchange protocol for CCN that follows
the same driving security principles used in TLS 1.3, QUIC,
and DTLS 1.2, (ii) additional DoS mitigation and mobility
support beyond TLS and QUIC, (iii) a description of how
to run encrypted CCNx sessions bootstrapped by CCNxKE,
(iv) a comprehensive discussion of how and why CCNxKE
deviates from modern transport security protocols, (v) an
expose of important use cases enabled by CCNxKE, and (vi)
an experimental assessment of its performance as implemented
in the CCNx software stack.

II. PRELIMINARIES

This section presents an overview of the CCN architecture2

and work related to confidentiality, privacy, and transport
security. Those familiar with these topics can skip it without
loss of continuity.

A. CCN Overview

In contrast to IP networks, which focus on end-host names
and addresses, CCN [11], [12] centers on content by making
it named, addressable, and routable within the network. A
content name is a URI-like string composed of one or more
variable-length name segments, each separated by a ‘/’ char-
acter. To obtain content, a user (consumer) issues a request,
called an interest message, with the name of the desired
content. This interest can be satisfied by either (1) a router
cache or (2) the content producer. A content object message
is returned to the consumer upon satisfaction of the interest.
Moreover, name matching in CCN is exact, e.g., an interest
for /ifip/networking/2017/cfp can only be satisfied by a content
object named /ifip/networking/2017/cfp.

In addition to a payload, content objects include several
fields. In this work, we are only interested in the follow-
ing three: Name, Validation, and ExpiryTime. The

1We believe there is ample room for improvement with a more optimized
implementation focused on procedures such as, e.g., packet encoding and
decoding.

2Named-Data Networking [11] is an ICN architecture related to CCN.
However, since CCNxKE was designed for ICNs that have features which
are not supported by NDN (such as exclusively exact name matching), we do
not focus on NDN in this work. However, CCNx could be retrofitted to work
for NDN as well.

Validation field is a composite of (1) validation algorithm
information (e.g., the signature algorithm used, its parameters,
and a link to the public verification key), and (2) validation
payload (e.g., the signature). We use the term “signature” to
refer to this field. ExpiryTime is an optional, producer-
recommended time after which a content object should not
be cached. Conversely, interest messages carry a mandatory
name, optional payload, and other fields that restrict the content
object response. The reader is encouraged to review [12] for a
complete description of all packet fields and their semantics.

Packets are moved in the network by routers or forwarders.
A forwarder is composed of at least the following two com-
ponents:
• Forwarding Information Base (FIB) – a table of name

prefixes and corresponding outgoing interfaces. The FIB
is used to route interests based on longest-prefix-matching
(LPM) of their names.

• Pending Interest Table (PIT) – a table of outstanding
(pending) interests and a set of corresponding incoming
interfaces.

A forwarder may also maintain an optional Content Store
(CS) used for content caching. From here on, we use the terms
CS and cache interchangeably.

Forwarders use the FIB to relay interests from consumers
to producers and the PIT to forward content object messages
along the reverse path to consumers. More specifically, upon
receiving an interest, a router R first checks its cache (if
present) to see if it can satisfy this interest locally. If the
content is not in the cache, R then consults the PIT to search
for an outstanding version of the same interest. If there is a PIT
match, the new incoming interface is added to the PIT entry.
Otherwise, R forwards the interest to the next hop according
to its FIB (if possible). For each forwarded interest, R stores
some amount of state information in the PIT, including the
name of the interest and the interface from which it arrived, so
that content may be sent back to the consumer. When content is
returned, R forwards it to all interfaces listed in the matching
PIT entry and said entry is removed. If a router receives a
content object without a matching PIT entry, the message is
deemed unsolicited and subsequently discarded.

B. Confidentiality and Privacy in CCN

Content-based encryption is arguably the most popular
technique for protecting CCN content from unauthorized dis-
closure. This strategy permits content to be disseminated
throughout the network since it cannot be decrypted by
adversaries without the appropriate decryption key(s). Many
variations of this approach have been proposed based on
general group-based encryption [13], broadcast encryption
[14], [15] and proxy re-encryption [16]. Kurihara et al. [17]
generalized these specialized approaches in a framework called
CCN-AC, an encryption-based access control framework that
shows how to use manifests to explicitly specify and enforce
other encryption-based access control policies. Consumers
use information in the manifest to (1) request appropriate
decryption keys and (2) use them to decrypt content object(s).
The NDN NBAC [18] scheme is similar to [17] in that it
allows decryption keys to be flexibly specified by a data owner.
However, it does this based on name engineering rules instead
of explicit configuration. Interest-based access control [19] is
a different type of access control scheme wherein content
was optionally encrypted. Access was protected by making
the names of content derivable by only authorized consumers.
NDN-ACE [20] is a recent access control framework for IoT
environments which includes a key exchange protocol for
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distributing secret keys to sensors. We revisit NDN-ACE in
Section VI-A.

III. CCNXKE DESIGN

In CCN, there is a trend to treat both confidentiality
and privacy as problems of the application. This leads to
diverse approaches for different niche applications. These ad
hoc solutions may be suitable for some applications, but we
claim that content-based encryption alone is not appropriate
for a variety of applications whose primary objective is not
content distribution, e.g., online banking and payroll, where
privacy is equally important to confidentiality. Encryption-
based access control does not offer privacy, primarily because
it only protects the content payloads and, by default, services
more than one consumer at a time. (See [2] for more details
about the challenges of privacy in CCN.) Such applications
need transport security akin to what is provided by TLS and
related protocols in today’s Internet.

The primary goal of the CCNxKE protocol is to enable
transport security by deriving forward secure traffic encryption
keys between a consumer and service. With respect to key ex-
change protocols, forward secrecy is the property that session
keys are not compromised even in the event that either party’s
long-term private keys are leaked. This is a much sought-after
property in communication protocols in recent years [21]. As
such, CCNxKE adopts the core exchanges in the TLS 1.3
protocol to derive all forward-secure secrets. These secrets are
then used to bootstrap session-based communication, wherein
traffic is encapsulated and encrypted using authenticated en-
cryption (AEAD) for transmission between two endpoints (i.e.,
a consumer and service) under a session associated with a
single name. With regards to DoS, the address-less nature of
CCN packets raises the need for a new mechanism to prevent
volumetric DoS attacks on the producer. CCNxKE introduces
a novel approach to address this problem that induces minimal
computational and constant storage overhead at the producer.

CCNxKE also goes beyond most IP-based transport secu-
rity protocols in its feature set. One important new feature
is the ability to migrate sessions from an authentication and
authorization service to one that serves content. To see why this
is useful, consider the following. Assume a consumer wishes
to access content within the the /parc/ namespace, but this
content is actually hosted under by a trusted content store under
the /xerox/cdn prefix. To begin, the consumer would initiate a
key exchange with the former name. Upon authenticating the
client and completing the key exchange, the producer who
executed this protocol with the consumer would provide a
special migration (move) token to the client along with the
prefix /xerox/cdn. The client could then use this move token
to resume the session under the new namespace to securely
fetch the desired content. Today, the equivalent method is to
establish a TLS session to a server, receive a redirect (e.g.
an HTTP 3xx), then establish a second TLS session with the
second server.

A. Protocol Description

Having motivated the goals and outlined the major prop-
erties of this protocol, we now describe its technical details.
CCNxKE is built on the CCNx 1.0 [12] protocol and uses
standard interest and content objects as a vehicle for data
transfer. It relies upon on the following minimal assump-
tions about peers participating in the CCNxKE protocol: (1)
Consumers know the namespace prefix of the desired service
to which to connect; (2) Interests and content objects carry

distinguished fields (separate from the payload) that contain
CCNxKE signaling information (this is done to not pollute
application data with key exchange signaling information); (3)
Forwarders have no participation in the protocol.

CCNxKE operates in (at most) two rounds, where each
round requires a single RTT to complete. These two rounds
are used to derive the session secrets (and keys). Application
data can be sent in either interest or content objects in the third
(and beyond) rounds (as described in Section IV). The exact
purpose of each round is described below.

R-1 Perform a bare hello exchange to obtain the public pro-
ducer parameters and a source cookie. The source cookie
is used to prevent DoS at the producer by pinning the key
exchange to the same consumer which initiated the first
interest. In this round, the consumer sends a BareHello
interest and the producer responds with a HelloReject
content object.

R-2 Perform the key exchange to establish the shared traffic
secret. In this round, the consumer sends a FullHello
interest and the producer responds with a HelloAccept
content object. The consumer may also optionally send
non-forward-secure data encrypted to the producer in this
round.

R-3 Send the first bit of application data to the destination
service and (optionally) migrate the session to a new ser-
vice. All messages sent in this round (and those after) are
protected with forward-secure authenticated encryption.

Each round is a single interest and content object exchange.
Unless otherwise specified, all content objects are signed by
the producer(s) and verified by consuers in the normal way.
The choice of trust model by which the consumer verifies the
producer’s signatures is orthogonal to the actual authentication
mechanics in CCNxKE. A consumer must use a trust model
through which the producer is trusted, else a session cannot
be created. In the first and second rounds, the interest name
includes the service’s prefix with a random nonce appended as
the suffix. (The nonce prevents cache hits and ensures that the
interest reaches the service). For example, if the service prefix
is /parc/service, then an interest for the first round might be
/parc/service/01234ABCDE. In the third round and beyond,
the interest name additionally includes a session ID and other
context information (see Section IV).

An overview of the full protocol with the standard mes-
sages sent in each of the three rounds is shown in Figure 1
below. The key derivation information is outlined in Section
IV-A. In the following sections, we describe the rounds of this
protocol in more detail.

B. Round 1: DoS Prevention

Similar to QUIC and DTLS, CCNxKE operates over a
stateless channel. Volumetric DoS attacks aimed at wasting
CPU cycles on a victim producer are notoriously difficult to
protect against because the server has no prior relationship with
the client. In IP-based protocols, the server cannot trivially
filter incoming packets as the attacker can easily spoof the
source address. QUIC and DTLS deal with this attack by
forcing the client to present a cryptographic token which binds
the incoming packet to the address presented. These tokens are
typically coupled with IPSec ESP style replay detection based
on sliding windows that prevent replay attacks for messages
carrying these tokens [22].3

3Neither DTLS nor QUIC have solutions that prevent legitimate clients from
flooding the server.
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Fig. 1. The base CCNxKE protocol showing a session migration between
producers P1 and P2. The green fields are encrypted with a non-forward-
secure secret (see section IV-A) and the blue fields are encrypted with the
forward-secure keys.

In CCN, interests have no source address. This means we
need another way to bind an interest to its originator. Our
solution relies on a simple proof-of-knowledge protocol that
proves the origin of the interest is that with whom the producer
had previously interacted. The proof works as follows: A
consumer will present a random challenge to the server during
the first round. The producer computes the stateless source
cookie from this value and returns the result to the consumer.
The consumer must then, in the subsequent round, present
proof that it generated the challenge to the producer. Once the
producer verifies the proof in this second interest, it concludes
that the originator of said interest must be the same entity
for whom the cookie was constructed. This is functionally
equivalent to the source address cookie used in DTLS and
QUIC.

To construct this source cookie and complete the originator
proof, we make use of a strong cryptographic hash function H
that is preimage resistant and a keyed message authentication
code (MAC) Fk. Cryptographically, a hash function H is pre-
image resistant if, given an output y = H(x), an adversary
find an input x′ such that H(x′) = H(x) = y. The originator
proof works as follows:

1) Cr generates a random x ← {0, 1}256 (SourceProof)
and computes y = H(x).

2) Cr sends y to the producer in the BareHello message.
3) P computes SourceCookie = Fk(y||t) where t is the

current timestamp and k is the producer’s secret key.
4) P returns SourceCookie and t to Cr in the HelloReject

message.

To prove ownership of SourceCookie, Cr must present
SourceCookie, the SourceProof x, and Timestamp t to
the producer in the subsequent (round two) interest. Before
processing the cookie, the producer first checks to see that the
interest is not a replay. (This can be done using the sliding
window technique of [22].) After, to verify that the cookie
is correct, P checks that SourceCookie = Fk(H(x)||t). If
equality holds, the source cookie is accepted and the producer
proceeds with the protocol. Based on the properties of H , an
adversary can only succeed in forging a source cookie or proof
with negligible probability.

The remainder of the round one traffic is catalog infor-
mation for the rest of the exchange, e.g., the signed server
parameters (ServerConfiguration) that contain the supported
algorithms (key exchange algorithms and ciphersuites) and
other miscellaneous information. One important response from
the producer is a pinned prefix. This allows the producer to pin
the key exchange to a specific end-host serving a namespace.
For example, suppose the client attempts to create a session
with the namespace /parc/service. The round one interest to
create this session may be multicast to several producers who
can provide this service. Suppose that a service node in control
of the /parc/service/nodeA prefix elects to handle the session. It
would then respond with the pinned prefix /parc/service/nodeA
to ensure that the subsequent interest would go only to that
node and not forwarded to others in the /parc/service names-
pace.

C. Round 2: Key Exchange

The second round serves several purposes: (1) choose the
session algorithm options, (2) exchange material to create
session secrets, (3) authenticate the server and (optionally) the
client, and (4) provide a move token and prefix to migrate the
session (if necessary). The following sections explain each of
these steps in more detail.

1) Algorithm Options: The consumer selects its preferred
cipher suites, signature algorithms, and key-exchange methods
from the server’s parameters provided in the ServerCon-
figuration of the HelloReject message. These options are
conveyed in the AlgorithmOptions field in the consumer
FullHello message. The producer will echo the chosen options
back to the consumer in an identical field if the FullHello is
accepted.

2) Handshake Variants: CCNxKE supports two handshake
variants, including (1) a full key exchange wherein the con-
sumer has no prior information about the service beyond its
prefix and (2) a resumption variant. The full variant is outlined
in Figure 1. In it, the consumer and producer exchange fresh
Diffie Hellman pairs carried in the KeyShare fields which
are used to derive the session secrets (as detailed in Section
IV-A). (This exchange is what enables the session to have
forward secrecy; session secrets are not derived based on
static information.) Notice also that the server provides a
MoveToken and MovePrefix. These are used to migrate the
session in a Kerberos-like [8] fashion. The details of which are
described in Section III-C4. Lastly, the session ID is generated
and provided by the service in the HelloAccept message. To
applications, the session ID is an opaque identifier that only
refers to a session. However, the service may embed state
within it if desired, similar to a TLS session ticket. CCNxKE
does not prescribe the generation of this value.

The resumption variant is designed to reduce the number
of round trips before sending data. Specifically, it allows the
consumer to resume a previously generated session with a
pre-shared key (PSK) and, simultaneously, send data after 1-
RTT encrypted under that PSK. In addition to sending the
PSK optionally encrypted data, the consumer may send a
KeyShare field in the FullHello so that they can derive a
forward-secure traffic secret for encrypting data after the first
message. Note that the producer always sends a new session
ID to the consumer in the HelloAccept message so that the
same session ID is not re-used across resumed sessions.

3) Peer Authentication: As always, the producer must
always authenticate itself. Unlike the first round, the HelloAc-
cept message, and all subsequent content objects sent from
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the producer, carry a MAC authenticator instead of a digital
signature. In the HelloAccept message, this MAC is generated
from the secret key derived from the key exchange algorithm.
In content objects after this round, this MAC is the tag from
the output of the authenticated encryption algorithm used to
encrypt (or encapsulate) data from the producer. We expand
on this in Section IV-C. This is necessary to prove knowledge
of the shared secret. See [23] and Section V for more details.
Also, the producer may supply its public key certificate (Cer-
tificate) in the HelloAccept message. However, this is not
necessary since the same producer must have supplied this in
the HelloReject message.

To support mutual authentication, the consumer must be
able to present its certificate and a signature to the producer.
However, this can only be done after the key exchange is
complete. This means that mutual authentication takes place
after the second round. (Again, see [23] for details.) To authen-
ticate itself, the consumer mirrors the producer’s behavior after
receiving the HelloAccept: it provides its public key certificate
(Certificate), signs the interest carrying the message, and
computes a MAC over the bundle which is inserted into the
interest validation field.

Related to mutual authentication, the consumer is able to
specify its own routable prefix in this post-handshake message
so that the service may send interests to the consumer for
bidirectional communication. This is an optional feature and
is enabled at the consumer’s discretion.

4) Session Migration: The CCNxKE session migration
feature is inspired by Kerberos and the recent LURK (limited
use of remote keys) BOF in the IETF [24]. The goal is to
allow a service to securely move a session from the node
that performed the handshake computations to another node
or service that can provide content for the consumer. This
effectively decouples the authentication and authorization steps
in CCN. To do so, we do not want this different service, called
the replica, to have access to the private key associated with
the primary service. Under this constraint, the migration step
must allow the session secrets (or more specifically, the initial
traffic secret TS0, described in Section IV-A) to be recovered
at the replica; this the minimal information necessary to derive
the keying material used to encrypt traffic. Moreover, we desire
this recovery to also prove that the consumer had previously
authenticated and performed the handshake with authentication
service. This prevents the replica from servicing unauthorized
consumers. Lastly, we want the recovery to not be itself another
form of computational DoS that can be exploited by malicious
consumers.

To achieve these goals, we use a proof technique similar
to that which is done for the SourceCookie. We assume that
the authentication service is able to create and update a shared
symmetric key k with ID kID with the replica. With this
information in place, the session migration protocol works as
follows.

1) Cr generates a random x← {0, 1}256 and computes y =
H(x).

2) Cr sends y to the producer in the FullHello message.
3) P computes the MoveToken = Enck(y||TS0||t) where t

is the current timestamp and k is the producer’s secret
key. Here, Enc is an authenticated encryption algorithm
such as AES-GCM [25] that produces ciphertext and an
authentication tag.

4) P returns the tuple (MoveToken, kID, t) to Cr in the
HelloAccept message.

To prove ownership of MoveToken, Cr must present this same

tuple along with x to the replica in the third round interest.
The replica must then verify the token and confirm that it
was produced by a trusted service. To do so, it performs the
following:

1) Check to see if the interest is a replay. If not, then discard
the interest.

2) Check to see if kID corresponds to a shared key with one
of its trusted services. If not, then discard the interest.

3) Attempt to compute Deck(MoveToken). If the decryption
fails, e.g., because the authentication fails, then discard
the interest.

4) Compute H(x) and verify that it equals the challenge y.
If not, discard the interest.

If all of these steps pass, then the replica knows that a trusted
service previously authorized the consumer who generated
the incoming interest to access stored content. As with the
SourceCookie, the MoveToken can only be forged with
negligible probability by the CCA-secure properties of the
authenticated encryption algorithm. As a technical matter, the
replica must provide a new session ID for the consumer after
authenticating its MoveToken. The consumer then uses this
new session ID for all subsequent communication. Optionally,
when migrating, Cr and the replica could perform another key
exchange to update their traffic secret. (This would be done by
sending mutual key shares in the interest and content messages.
These are not shown in the protocol shown in Figure 1.)
Moreover, the producer and service must update their shared
key after a move token is issued. This prevents the compromise
of the producer from exposing previously migrated sessions.

We comment that we the MoveToken can be generated by
the producer at any point after the key exchange is complete.
However, if client authentication is required prior to issuing a
move token, then the producer cannot send one until after the
third round. This is due to the fact that client authentication
cannot safely happen until after the key exchange is complete.

IV. SECURE SESSIONS

After the key exchange is complete, the consumer and
producer derive the keying material used to encrypt traffic.
In this section, we describe the key derivation steps4 and then
show the mechanics necessary to perform interest and content
encryption between a consumer and service.

A. Session Secret and Key Derivation

The forward-secure secret derived in CCNxKE is the traffic
secret (TS). This is ultimately derived from a master secret
(MS). In the standard handshake, TS is derived from the
consumer and producer DH key shares DHC and DHP ,
respectively. Specifically, let s = DH(DHC , DHP ) be the
output of a DH exchange using the two shares DHC and
DHP . MS is then computed as HKDFExtract(0, H(s)),
where H is a hash function. (See [26] for the HKDF details.)
In the resumption variant, the 1-RTT data key is derived from
the PSK k and the subsequent forward secure MS is derived
from the pair of DH shares and k. Here, the 1-RTT key
ke is computed as ke = HKDFExtract(0, H(k) and MS is
subsequently computed as HKDFExtract(ke, H(s)). After this
computation, MS is then used to create the initial TS (TS0)
as follows:

TS0 = HKDFExpandLabel(MS, ”traffic secret”, ke hash, L)

Here, the parameter L is the desired length of the secret to be
created and is usually 256 bits. Also, ke hash is the hash

4The key derivation material is based on TLS 1.3 [3].
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of the concatenated CCNxKE messages received up to the
point of derivation. (In this case, it is the hash of the entire
transcript.) TSi is updated by simply performing another KDF
operation. Moreover, all symmetric keys and IVs are generated
by expanding TSi.

B. Message Encapsulation

With the cryptographic keying material, both the consumer
and service can encrypt messages to exchange with one an-
other. Message encryption is done by total encapsulation: full
CCNx interests and content objects with (or without) names
and provenance information are encapsulated in “wrapper”
interests and content objects that are transferred between the
consumer and service. We use total encapsulation because it
leaks the least amount of information about the encrypted
plaintext and allows for easy padding. The outer wrapper
has a normal CCN name that identifies (a) the prefix of the
service, (b) the session ID (SID), and (c) a sequence number
(expressed as a chunk number). For example, this name could
be /parc/gateway/SID=0x1234/chunk=0x12341234. This name
is carried by the interests and content objects exchanged
between the consumer and service. The payload of these
messages contain the actual encapsulated messages (interest
or content object) to be sent between the two parties. We refer
to these encapsulated messages as the inner messages and the
transport messages with the outer name as the outer messages.
For brevity, we refer to the names associated with inner and
outer messages as NI and NO, respectively.

It is possible (and likely) that each NI is unrelated to each
NO. For example, it is valid for a message with the previously
state outer name to carry an encapsulated message with a
name /irtf/icnrg/agenda96. Also, it is not a requirement for
the inner messages to “correspond” to the outer messages. For
example, if a consumer sends three interests with outer names
NO1, NO2, NO3 and inner names NI1, NI2, and NI3, the
producer can return these names in any order. It could, for
example, put content objects with name NI3 in NO1, NI1
in NO2, and NI2 in NO3. We do, however, require that one
outer message request return one outer message response as
per the usual symmetric nature of CCN. It is possible for the
outer message response to be an Interest Return (NACK) if
the producer cannot handle the corresponding inner message.

The point of separating inner and outer messages is that
inner messages have only end-to-end meaning, i.e., between
the consumer and service. Inner messages may themselves be
protected with a different form application-specific encryption,
e.g., broadcast encryption. The encapsulation method does not
preclude any inner message format – it only places a cap on
the total size of the message.5

C. Processing Chain

The processing chain that performs encapsulation and
decapsulation from a consumer source to a service sink is
shown in Figure 2. The compression and decompression stages
are optional and are not strongly tied to the encrypted session.
If used, we assume compression is done so as to avoid attacks
similar to CRIME [28].

The encryption and decryption logic happens in the en-
cryption and framing stages of the chain. Given an interest
with the inner name NI to be sent as the n-th message in
session SID=0x1234, the encryptor performs the following

5In CCN, the total packet length of the inner message is bounded by the
maximum packet size of 64KB [12], [27].
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Fig. 2. The encrypted CCNx session pipeline.

steps: First, the AEAD nonce is derived from the local state
and unique packet number. Then, the wire format encoding
of the inner message is encrypted with the chosen AEAD
algorithm using the IV and the client or service write key.
(The additional authenticated data for the AEAD algorithm is
set to the fixed contents of the to-be-created outer message that
do not include the payload.) The output ciphertext is used as
the encapsulated message in the outer message with an NO
such as /service/prefix/SID=0x1234/chunk=n. Moreover, the
authentication tag from the encryption algorithm is inserted
into the Validation payload of the outer message.

The decryptor performs the inverse operation given the NO
and its own copy of the consumer write key and nonce. If an
error occurred in the replica decryption chain then an interest
return (NACK) with an appropriate error code is encrypted
and returned to the consumer in an outer content object.
Once the sink receives the inner message it may respond
with a satisfying content object or an interest return. The
processing chain does not distinguish between these responses
and encrypts them equally.

V. SECURITY ANALYSIS

To assess the security of the CCNxKE protocol, we adopt
the attacker model of the OPTLS protocol used in [29], which
originates from [30]. The attacker here is a man-in-the-middle
adversary Adv whose goal is to learn information about active
sessions. Thus, security means that compromising a given
session should have no adverse affects on other non-matching
sessions in the network. By non-matching we refer to active
and in-progress sessions that are not equal to the session
that was compromised. Adv is assumed to have complete
control over all links between active parties in a CCNxKE
protocol execution. In particular, Adv can intercept, modify,
and inject messages into exchange when desired, as well as
control the timing of messages in the protocol. To capture
these capabilities, among others, Adv is given access to the
following functions:

• StateReveal(): This function returns all the state infor-
mation associated with an incomplete session, i.e., one
that is still in performing a handshake.

• Reveal(): This function returns the traffic secret associ-
ated with an already-completed session.

• Corrupt(): This function compromises a given entity such
that any and all long-term term secrets are disclosed.

For uniqueness, we refer to a session identifier as the concate-
nation of all messages transferred thus far in one invocation
of the protocol. Two sessions are therefore matching if their
session identifiers are equal. Any session which is subjected
to any of the above functions is heretofore referred to as
exposed. Under this notion, the security of a CCNxKE session
(i.e., its traffic secret) is defined as the advantage Adv has in
distinguishing the traffic secret of a chosen session, migrated
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(moved) or not, and a random value. Moreover, it must be the
case that Adv learns nothing about the traffic secrets of non-
exposed sessions, even if other non-matching sessions were
exposed.

We are also concerned with forward secrecy. We capture
this by relaxing the definition of un-exposed sessions to those
which can be corrupted even after a session is complete.
(Corruption cannot occur during the session establishment
phase.) Lastly, we strive for the protocol to be secure even
in the event of an ephemeral secret disclosure. This occurs
when the StateReveal() query is invoked for the producer.

In our analysis we consider two variants of the CCNxKE
protocol: stationary and multi-homed. The stationary variant is
one where the producer does not provide a MoveToken to the
consumer. However, this does not prevent Adv from injecting
in the handshake. Multi-homed CCNxKE is one in which the
producer provides a MoveToken. This variant requires more
care when assessing the security since it involves multiple,
possibly corrupt, producers.

Definition 1: Stationary CCNxKE is secure if for all prob-
abilistic, polynomial-time adversaries Adv it holds that:

1) If two uncorrupted parties complete matching sessions
then they derive the same traffic secret.

2) The probability of Adv winning at the aforementioned
distinguishing game is negligible.

Definition 2: Multi-homed CCNxKE is secure if for all
probabilistic, polynomial-time adversaries Adv it holds that:

1) Stationary CCNxKE is secure with respect to Adv.
2) Exposure of migrated sessions does not compromise other

non-exposed sessions.

Using these definitions, we now assess the security of the
CCNx-KE handshake.

Claim 1: Stationary CCNxKE is secure.

Proof: (Sketch) Most of the handshake protocol in station-
ary CCNxKE reduces to the OPTLS (and SIGMA) protocol
in [29]. Notable exceptions are, e.g., the use of the Source-
Cookie to prove the origin of an interest. These are extra inputs
into the handshake transcript that are used when stretching the
master secret to the traffic secret.

Claim 2: Multi-homed CCNxKE is secure.

Proof: (Sketch) The core problem here is that a session
is migrated to another producer. To be secure, it must be true
that compromising the original producer does not reveal any
information about other active sessions or the migrated session.
Recall how session migration occurs. The consumer presents
a MoveProof and MoveToken to the new service, the latter
of which contains TS encrypted for the service. For Adv to
distinguish this from a random value, as in the stationary case,
it must learn some information about TS. It can get this from
(a) the original producer, (b) the MoveToken, or the new
service. First, corruption of the new service will reveal the TS,
but this will not compromise any other non-exposed sessions.
Second, since the MoveToken is encrypted with a key shared
between the original producer and new service, Adv can only
access the information if it corrupts one of these parties. By
compromising either one, the shared key is learned and the
token can be decrypted. However, this also does not reveal
information about past sessions since (a) the shared key is
always updated after every move token and (b) the consumer
and replica derive fresh traffic secrets during the migration
step. Lastly, compromising the producer to acquire the TS is

ineffective since this state is removed after the MoveToken is
generated and returned to the consumer. Therefore, revealing
the migrated TS only harms a targeted session, and this TS
is indistinguishable from a random value.

VI. DISCUSSION

In this section we compare CCNxKE to modern transport
encryption protocols to support key design decisions. We also
describe several use cases for secure sessions in CCN.

A. Protocol Comparison

For obvious reasons, the design of CCNxKE tracked that
of modern transport security protocols. Deviations were only
made when some feature of these IP protocols did not map to
the CCN communication model. We will compare CCNxKE
to TLS 1.3 [3], DTLS 1.2 [6], and NDN-ACE [20].6

With respect to TLS 1.3, CCNxKE distinguishes itself in
four important ways:

1) CCNxKE sessions can be migrated to other producers
(services), whereas TLS sessions are pinned to the same
server which completed the handshake. This feature was
added to CCNxKE for reasons outlined in Section III.

2) Communication is only one-way unless the consumer
supplies its own routable prefix to the producer in round
2. Conversely, TLS enjoys the benefits of full-duplex
TCP streams. CCNxKE does not specify mechanisms for
providing transport semantics similar to TCP (as DTLS
does). This is the responsibility of some component above
the session encryption layer, which is outside the scope
of this work.

3) CCNxKE uses custom source cookies and move tokens
to minimize computational DoS on services. Conversely,
TLS enjoys DoS protections from TCP via, e.g., SYN-
cookies [32].

4) CCNxKE encrypted sessions transfer regular CCN mes-
sages which have their own associated provenance and
authenticity information. This is in contrast to TLS which
enables secure byte streams. This encapsulation method
was chosen to retain the CCN message authenticity proofs
and permit recursive (nested) sessions with CCNxKE.

The remaining features between CCNxKE and TLS 1.3 are
isomorphic, such as the supported cipher suites and key
exchange algorithms (modulo encoding schemes).

With respect to DTLS 1.27, CCNxKE uses its own DoS
cookie mechanism to bind a key exchange request to a single
originator. This is in contrast to the mechanism supported by
DTLS which binds these packets to source IP addresses. Also,
CCNxKE is not peer-to-peer as DTLS. Rather, it’s between
a consumer and some service that owns the authoritative
namespace. This makes CCNxKE a one-to-many protocol due
to the multicast nature of interests and routing in CCN.

NDN-ACE is a framework for access control in IoT en-
vironments that includes its own key exchange and message
transmission protocol for distributing secret keys and then
using them. However, these have significant weaknesses from
a security and performance perspective. First, it is highly
vulnerable to DoS attacks since there is nothing to prevent

6We omit QUIC since, at the time of writing, it is moving towards adopting
the TLS 1.3 handshake for secret derivation [31].

7We only comment on the differences between CCNxKE and DTLS 1.2 for
features that were not updated or fixed in TLS 1.3 and those which were not
mentioned in comparison to TLS 1.3.
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malicious consumers from overloading the authorization server
(AS) with fake interests that cause it to perform unnecessary
signature verification and DH operations. Second, the actual
key that is distributed (the access key) is not forward-secure.
Third, this key is only used to authenticate interests sent after
the exchange; interest messages sent as part of the primary
message transmission protocol contain cleartext names and
are therefore not private. The NDN-ACE framework therefore
offers no communication privacy since the intent of every
action can be discerned from its name. In sumation, NDN-
ACE is a protocol to distribute a static secrets to consumers,
not a protocol to afford them any confidentiality with forward-
secrecy.

B. Session Use Cases

Traditional Client-Server Applications: Many traditional
client-server applications such as banking and payroll require
a client to securely communicate with a single server (or
service) to perform sensitive operations or transfer private data.
Moreover, in many existing CCN applications that employ
encryption-based access control, the process by which con-
sumers securely obtain their private keys from the producer is
often overlooked. For example, in applications using broadcast
encryption schemes such as [14], a trusted key generator is
responsible for producing client secret keys. Therefore, there
must be a way to securely transfer these keys to the client.
Since this type of information is meant for a single, specific
consumer, there is no benefit to caching the data (beyond trans-
port retransmission use). Furthermore, the transfer should use
best-practice cryptography for data in transit, i.e., use forward-
secure keys to encrypt all traffic. CCNxKE enables a way to
address these problems. For applications where the service
must send data to the consumer, the latter can authenticate
themselves in the second round of the handshake to prevent
any unauthorized information disclosure. Using the previous
key distribution example again, if the service authentication
and key generation agents are physically disjoint then it would
be possible for the the service to issue a MoveToken to allow
the consumer to securely communicate with the key generator.

Secure Content Distribution: A powerful use case for
CCNxKE is in secure content distribution. In modern web
applications that use CDNs to distribute popular content, the
client application almost always obtains data over a TLS
session from the CDN node. However, the client only does so
because the content producer has granted the CDN access to a
private key that allows CDN nodes to masquerade as the actual
server during the session establishment step. In this way, the
client remains oblivious to whether or not it is communicating
with the actual server or a CDN. Recently, the IETF LURK
(Limited Use of Remove Keys) [24] BOF was created to solve
this problem of offloading TLS without exposing any private
keys to the CDN. CCNxKE solves this problem through the use
of the MoveToken. In particular, the producer can grant the
consumer secure access to content stored at a CDN by issuing
a move token for a said CDN, or replica. The consumer would
then migrate its session to the replica using this move token
and continue to fetch the required content.8

The MoveToken allows a consumer to create a secure
session with the replica to securely fetch content. However,
in many modern applications, the content stored in the replica
is itself encrypted under some form of group encryption, e.g.,

8Since, today, services and replica have a mutually trusting relationship,
it is not egregious to believe that the service and replica could generate and
maintain a shared secret to compute move tokens.

broadcast encryption. This prevents the service from disclosing
the contents of the its data to the replica and therefore uses the
replica as a distribution medium. The consumer may obtain the
secret keys necessary to encrypt said content from the server
using a separate session (as described in the prior use case).

VII. PERFORMANCE ANALYSIS

We implemented a minimal version of the CCNxKE pro-
tocol and processing chain to test the amount of overhead it
adds to standard CCNx traffic. Our implementation consists
of the full handshake protocol without session migration. The
key exchange algorithm uses the secp256r1 (NIST P-256)
curve and encryption uses a 256-bit key with AES-GCM.
To compare the added overhead, we augmented a CCNx file
transfer application to transfer data over a secure session. We
are concerned with two primary metrics: the key exchange
overhead (the time required to complete the first two rounds at
the consumer) and the data transfer computation overhead (the
additional amount of time added by encrypting and decrypting
packets). Thus, we configured the consumer and producer in a
simple single-hop topology to perform the experiment, i.e., the
consumer and producer are connected to the same forwarder.9
All experiments were conducted on a machine with an 2.8
GHz Intel Core i7 processor with 16GB of DDR3 memory
using OpenSSL.

The file transfer application works as follows. A producer
pre-processes a file to produce a manifest [33]. The consumer
then requests this root manifest and uses it to recursively
resolve the rest of the content object chunks that make up
the file. The exact fetching procedure is outlined in [33]. The
consumer uses a simple stop-and-wait protocol when issuing
interests and retrieving content objects. (This is because there
was no transport protocol to use for the experiment.) This is not
a requirement for CCNxKE, however, since the outer name for
each interest uniquely identifies the state needed to decrypt the
packet. In other words, the producer can handle out-of-order
outer interests. In the secure session variant of this application,
the consumer establishes a session with the producer and then
issues all of its normal interests over this session. No other
changes were made.

Our experiments indicate that the key exchange part of
the application takes an average of 2.127ms with a standard
deviation of 0.474ms. This exchange includes the round one
BareHello message, the round two key derivation step wherein
the producer verifies the cookie and, upon validation, generates
and returns a key share for the consumer, and the subsequent
consumer traffic secret generation step.

Figure 3 shows the cryptographic overhead at the con-
sumer. (The same data, except inverted, was observed at the
producer.) We observe that interest encryption is an efficient
process that takes at most 5us to complete (since interests
are small), whereas decryption varies based on the content
object chunk size. In general, we observed that the decryption
was bounded by approximately 30us. The encryption and
decryption steps had an obvious effect on the data transfer
time. Figure 4 shows the percentage increase in transfer time
(in microseconds). Our results indicate that this increased the
time to transfer the file by at most 50% and on average by
approximately 30%.10

9The topology was kept small so as to amplify the computational overhead
incurred by the use of CCNxKE. Moreover, forwarders have no role in
CCNxKE, so we wanted to minimize their role in the experiment.

10This number could be substantially reduced with a better implementation.
Problem areas in the current code include packet encoding and decoding.
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Fig. 3. Packet encryption and decryption overhead at the client. Each x-axis
label indicates the size of the file transferred and the producer chunk size used
to create the manifest, e.g., 500KB-4096 indicates a 500KB file transferred
with a 4096B chunk size.
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Fig. 4. Data transfer percentage increase

VIII. CONCLUSION

We presented CCNxKE, the first session-centric key ex-
change protocol that enables forward secure communication
between a consumer and service producer. We described its
design and discussed how it can be used to encrypt CCN
packets (interests and content objects). We also compared the
protocol to modern TCP/IP protocols, presented an expose
of use cases for secure sessions in CCN, and conducted a
preliminary performance assessment. Given the clear need
for secure sessions for certain applications, this work is both
timely and important in formally defining a protocol optimized
for a prominent ICN architecture to achieve it. For future work,
we plan to integrate support for multiple encryption contexts
in a given CCNxKE session and integrate consumer deniability
as a core feature of the protocol.
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