
Trust in Information-Centric Networking:
From Theory to Practice

Christian Tschudin
Dept of Mathematics and Computer Science

University of Basel, Switzerland
christian.tschudin@unibas.ch

Ersin Uzun
Palo Alto Research Center
Palo Alto, CA 94304, USA

ersin.uzun@parc.com

Christopher A. Wood+

Dept of Computer Science
University of California Irvine, USA

woodc1@uci.edu

Abstract—We present the logical design of a trust engine for
Information-Centric Networking (ICN) that is capable of effi-
ciently and correctly verifying content integrity and authenticity.
Our primary contribution is the synthesis and unified treatment
of four different and popular trust models. We show in which
operational aspects they vary and emphasize which parts of
the verification mechanics are invariant. The verifier logic is
expressed in Prolog to show its simplicity (abstracting away, e.g.,
procedural certification chain verification steps) and to highlight
subtle errors that can occur in the use and enforcement of trust
models. The details of an implementation of our trust engine
in the CCNx network stack are presented to demonstrate its
viability and general modularity. A simplistic interface enables
the trust engine to be easily ported to any ICN-style network
software. Finally, we demonstrate how application instantiations
of various trust models are natively supported by the trust engine
to illustrate its flexibility.

Index Terms—Information-centric networking, Trust models,
Trust engine, Content object verification

I. Introduction
Today’s Internet architecture closely resembles legacy

packet-switching communication networks. While this design
was once well suited for communication-related applications
such as e-mail and access to remote computing resources,
the demands of modern mobile and data-centric applications
from the network are significantly different. In response to
these problems, a number of independent research efforts have
spawned to design the future Internet architecture. Content-
Centric Networking (CCN) [4] by PARC and its academic fork
Named-Data Networking (NDN) [15] are two examples that
employ an information-centric approach to networking (ICN)1.

In contrast to today’s IP-based networks, CCN names con-
tent rather than hosts in the network. In other words, CCN
transfers named-data (content) instead of packets addressed to
particular hosts. Every network level data object is individually
addressable and is signed directly or indirectly by a digital
signature. This radical change in the naming and security
model enables content to be opportunistically cached and
served from any node in the network while still providing
the following guarantees at the packet level:
• Correctness: Signatures securely bind content names to

content payloads enabling secure verification of received
content with a name that matches the request.

+Supported by NSF Graduate Research Fellowship DGE-1321846.
1In this paper, we focus on CCN for a more coherent presentation due to

minor differences between the two sibling architectures.

• Integrity: A valid signature ensures the content, as re-
ceived, was not modified in transit.

• Authenticity: Signatures are tied to content producers via
their public keys. Thus, a valid signature identifies the
origin (producer) of the content.

In practice, however, this verification places a non-negligible
burden on networks nodes. For instance, signature verification
is computationally expensive. So even if routers had the
correct verification keys, they cannot be expected to verify
the signatures of all forwarded content without degrading the
throughput. Moreover, trust is an application-specific concept
and intermediate nodes in the network usually lack the con-
textual information needed to determine which content should
be trusted.

Opting out of the security verification process in CCN is
not practical as it leaves the network susceptible to cache
pollution and denial of service (DoS) attacks [7], [9]. Ghali et
al. discuss this issue in detail in [9] and identify the minimum
functionality needed at the network layer to mitigate such
attacks. The two main conclusions they arrive at are: (1)
requests in CCN should carry sufficient information about the
consumer’s trust context and (2) CCN nodes should assert
whether or not a content aligns with the requester’s trust
preferences before using it as a viable response to a request.

Given the critical importance of trust management and
enforcement, the above suggestions are already employed
in the latest protocol specification of CCN [16] to provide
the basic functionality for network-layer trust enforcement.
However, some key issues have yet to be resolved regarding
practical trust management for routers and end hosts in CCN:
• Security guarantees are provided at the network level in

CCN. However, there is no standard model or pattern
for implementing and enforcing application-specific trust
models at end hosts in CCN.

• There is no concrete machinery via which complex
application-specific trust semantics can be tied to the
basic enforcement functionality provided by the network.

In this paper we address these issues by first capturing
the requirements of and describing the logical design for a
trust engine that is capable of efficiently verifying content
authenticity under different trust models. This trust engine
extends network verification with the required functionality
to implement and enforce application-specific trust models.
Second, we present one possible implementation of this engine

2

as a user-defined and configurable trust management module
for the CCNx [4] network stack. We then show how to specify
and enforce several popular trust models using this engine,
including the recently schematized trust models pioneered by
NDN [19], [20]. To the best of our knowledge, this is the first
attempt to detail a high-level guiding logical design and an
actual implementation of it within a network stack.

II. CCN Architecture Overview

The fundamental principle of data transfer in CCN and
related architectures is simple: named content objects are
transferred from producers to consumers in response to explicit
requests. Such requests are formulated as interest messages
that specify the intended content object’s name. For example,
an interest for an image fileA published by entity entityX
could have the name /entityX/images/fileA.

Interests have optional fields called KeyId and
ContentObjectHashRestriction. The KeyId field is
used to specify the (cryptographic) hash digest of the
public key that is trusted by the requester to verify the
signature of the requested content object. Similarly, the
ContentObjectHashRestriction field is used to specify
the hash digest of the desired content object. Together, these
fields limit the set of possible objects that can be returned
in response to an interest message and allow consumer trust
preferences to be enforced at the network layer [9].

Structurally, content object messages have the two follow-
ing important differences from interest messages: (1) content
objects must carry a payload, and (2) they do not have a
ContentObjectHashRestriction field (this hash is calcu-
lated at each hop). In addition, they also carry an optional
validation payload which holds the content signature or some
alternative form of authenticator, e.g., a HMAC tag.

To enable the transfer of named data, CCN routers have for-
warders which are composed of (1) a forwarding information
base (FIB) and (2) pending interest table (PIT). Forwarders
may also have an optional content store (CS). Much like tra-
ditional IP routing tables, the FIB is populated using standard
routing protocols or static routes and matches interest names to
FIB entries using longest prefix match (LPM). The PIT stores
information of previously forwarded interests so that content
object responses may follow the reverse path back to the
requester. (This is why interests do not carry a source address.)
This information includes the interest arrival interface(s),
name, KeyId, and ContentObjectHashRestriction. Fi-
nally, the CS is a cache for content objects that, if present, is
first searched for matching content objects prior to forwarding
an interest upstream. If the CS contains the matching content
object for an interest, then the interest is consumed and the
match is forwarded downstream.

A CCN forwarder will only satisfy an interest via a
content object from its CS or from upstream if the names
(and the KeyId fields if specified in the interest) are
equal to that of the content object. Additionally, if the
ContentObjectHashRestriction is specified in the interest
packet, a CCN forwarder will also calculate the hash of the
content object and check for equality with the value provided.

CCN forwarders with a CS are not allowed to respond to
interests that specify a KeyId from their CS unless they
mechanically verified the signature and the KeyId on that
content object are correct.

As a final note, CCNx 1.0 includes Manifests, a type
of content object that encapsulates pointers to other con-
tent object chunks and metadata for these pointers (see [3],
[13], [18]). Each pointer contains an optional name and a
ContentObjectHashRestriction value that is used to issue
an interest for the corresponding chunk. This avoids the need
to verify the signature on every chunk. That is, upon the valida-
tion of the digital signature on the manifest, the list of pointers
(with names and hashes) it carries can be used to issue interests
with the specified ContentObjectHashRestriction values
so that the responses can be verified by hash equality.

III. The Importance of Trust in CCN

CCN allows content to be cached and served from any
forwarder in the network. Without proper trust enforcement
at the network layer, fake or corrupted content objects (i.e.,
content poisoning attacks) would have a grave effect on the
network [7], [8].

Ghali et al. [9] correctly observed that network layer trust
in content and content poisoning are inseparable in CCN.
Consequently, routers must be given some way to ascertain
the authenticity of content objects in response to interests.
Thus we abide the rule defined in [9] which states that each
interest must reflect the trust context of the issuing consumer
in a form enforceable at the network layer. In CCNx 1.0 this
translates into the need for an interest message to uniquely
identify the content object signature verification key (via the
KeyId) or the hash digest of the requested content object (via
the ContentObjectHashRestriction). This rule identifies
an architectural design element that is necessary for CCN
to be robust against content poisoning attacks. However, it
is far from sufficient to achieve the robustness, security, and
flexibility that is required for applications. To date, there is no
clear mapping from application trust models to application-
agnostic enforcement mechanisms.

When translating the theory of trust in CCN to practice, we
claim that one must consider at least the following:

1) Given the complexity of the trust verification process
under potentially many indirections and trust models, a
complete logical design for the process is necessary to
guide successful implementation efforts.

2) Since trust is an integral part of the network architecture
in CCN, enforcement logic and mechanisms should not
have to be encoded at the application layer.

Thus, a trust engine for the network stack and corresponding
APIs are needed to make security a seamless part of develop-
ment, independent of what trust model an application might
choose to employ. In this paper, we aim to bridge this the
gap from theory to practice by designing the overall guiding
logic to implement trust management in CCN-style networks
and describe our implementation of it in the network stack.
We also provide examples for initiating various trust models
using our design and implementation.

3

IV. TrustManagement (Four Standard TrustModels)
The core elements of any trust management scheme are,

at a minimum, (a) specifying and enforcing trust models
and (b) bootstrapping and maintaining trust context for this
enforcement. In this work, we consider a trust model to be a
set of rules by which content is both signed and verified. Thus,
content signed under one trust model must be verifiable in the
same trust model. Bootstrapping is the process of initializing
the state of the trust context, which is a set of trusted keys
and procedures that can be used to procure more trusted keys.
In this way, the trust context organically grows in time.

Logically, trust models can either be centralized or de-
centralized (the implementations will typically be distributed,
though). Centralized trust models are similar to PKI schemes
where certifying authorities bind subordinate keys to identi-
ties via digital signatures. This creates a chain of keys that
are rooted at trust anchors. In a hierarchical trust model,
certificates and signing authorities follow a hierarchy that is
rooted at one or more central anchors trusted by all verifiers.
Practical instantiations of this trust model might rely on x509
certificates to explicitly identify the names of parent keys and
to restrict the name space for which a signed key is valid.

The schematized trust model introduced in [20] is a re-
striction on the hierarchical trust model where key certificates
and other signed content cannot have arbitrary names but must
obey some well-defined pattern that links the name of the
signed key or the content to the name of the signing key.
As in the hierarchical case, the central element is the trust
anchor, plus the set of rules specifying the acceptable linkage
between the names for that schematized trust model instance.
Schematized trust models can be useful for intra-organization
trust management where the ownership of the entire schema
namespace is not an issue.

Contrary to centralized trust models, distributed trust models
do not require keys to be generated by centralized parties. The
Web-of-Trust model is one example of a distributed trust
model wherein keys are still connected by some chain, but
the trust of each link in this chain is not a binary decision
(i.e., is the signature from the certifying authority valid?).
Instead, keys are associated with measures of confidence.
(More details about computing this metric can be found
in PGP-like recommendations [1], [17] and algebraic trust
quantization outlined in [11]). The implication of these models
is that verifiers must compute the measure of trust in keys. If
the computed confidence in a key falls below a given threshold,
then the key is considered untrusted and verification fails. Such
logically distributed models are appropriate for applications
where there is insufficient confidence in the existing PKI
environment and the certifying authorities contained therein.

Finally, consider the case where the validity of content is
not ascertained using public key digital signatures, but through
a pre-shared symmetric key. In CCN, the validation payload
of a content object may contain a keyed Message Authen-
tication Code (MAC), e.g., HMAC-SHA256. To authenticate
the content object, a validator must possess the symmetric
key used to generate the MAC tag; there is no external
key resolution as with the trust models based on public key

cryptography. Functionally, keyed MACs provide a different
level of trust guarantee to verifiers than the digital signatures
due to its symmetric nature (i.e., the same key is used by
both the generator and the verifier). HMAC authenticators
are appropriate in scenarios where the task of performing
public key signing or verification is too expensive (in terms
of computation, memory, or even power). Thus, one plausible
ecosystem wherein pre-shared key trust models might be used
are sensor networks with a fixed and limited set of devices,
all of which lack the computation and power requirements for
public key cryptographic operations.

Note that MACs are not cryptographic signatures. However,
for presentation purposes, we will refer to HMAC tags as
signatures and to tag generators as signers since, for the
purposes of verification considered here, both HMAC tags and
signatures are used to decide whether the received content is
intact (i.e, not modified in transit) and authentic.

In the following section we will refer to these four proto-
typical cases as the keyed MAC, hierarchical, schematized,
and Web-of-Trust trust models.

V. TrustModel Templates for a Trust Engine

In this section we specify the logic of a general trust engine
that can handle the four trust models introduced above. As we
will show later, the logical details for each model are not that
different despite the (perceived large) differences in practice.
We will use Prolog to express the validation and signing logic
and point out how this high-level representation can also be
used to search for conceptual and configuration problems in a
given trust model instance.

A. Core Validation Logic

As previously stated, a trust context in which a packet must
be validated is merely a list of trusted keys plus a model-
specific (set of) procedure(s) for procuring additional trusted
keys on demand. Signature validation is then carried out by
first trying to locate a suitable key in the trust context and
only if this fails by fetching additional keys in a controlled
way. Bootstrapping the trust context means starting with a
minimally configured trust context containing only a few trust
anchors that then is inflated at run time. The trust context
also incorporates the concept of caching keys: The expensive
fetching of keys can be amortized by recording the outcome
of each key validation decision.

We now turn our attention to expressing the core validation
logic in Prolog. There are several benefits to this representa-
tion. First, Prolog permits us to hide iteration: Looping over
a list of trusted keys, for example, does not need to be coded
explicitly. Second, as we will see for schematized trust, rules
that operate on name (positional) patterns are quite easy to
express without referring to grep or other tools working at the
text surface. As a reminder, in Prolog, variables start with an
uppercase letter while the underscore character is a placeholder
for any value. Now, finally, using Prolog, the trust engine’s
core logic for packet validation is surprisingly simple and can
be expressed as in Figure 1.

4

1 isValidPkt(Packet, TrustContextIn, TrustContextOut) :-
2 Packet = pkt(DataName, _, KeyInfo, PktHash, PktSignature),
3 getTrustedKey(DataName,KeyInfo,TrustContextIn,TrustContextOut),
4 KeyInfo = key(_, _, KeyBits),
5 isValidSignature(PktHash, PktSignature, KeyBits),

Fig. 1: isValidPkt predicate.

Starting with a given packet and trust context, the system
tries to satisfy the isValidPkt() predicate by getting a
trusted key and validating the packet’s signature.

As can be seen in the code sample above, some data
structures are made explicit: A packet has a field for the data
name, the information regarding which key was used to sign,
the hash value (computed over the received bytes) and the
signature value added by the packet producer.

We use three fields to represent KeyInfo; namely the key’s
name, the key’s ID, and the key’s value (raw bytes). Note the
use of the underscore to leave some fields empty: A packet
could include a key locator, key ID, or nothing and yet still
have the KeyInfo.

Finally, the trust context contains a tag telling which kind
of trust model it represents, the list of trusted keys, plus an
auxiliary field for the name pattern rules (schematized trust)
or the list of acquainted names of peers and their trust level
(web of trust).

Getting a trusted key may include the side effect of inflating
the trust context; this is the step wherein different trust models
lead to different run time behavior. The getTrustedKey
predicate must handle two cases: (1) either we find a suitable
key in our context (using the member() function), in which
case the trust context does not change (i.e., the input and
output parameters are identical), or (2) we have to fetch
a suitable key over the network in a trusted way. This is
expressed in a (still) model-agnostic way with the following
two rules:

1 getTrustedKey(_, KeyInfo, TrustContext, TrustContext) :-
2 TrustContext = trustCtx(_, TrustedKeyList, _),
3 member(KeyInfo, TrustedKeyList).
4

5 getTrustedKey(DataName,KeyInfo,TrustContextIn,TrustContextOut) :-
6 fetchTrustedKey(DataName,KeyInfo,TrustContextIn,TrustContextOut).

Fig. 2: getTrustedKey predicate rules.

All differences among the trust models are now isolated to
the getTrustedKey() predicate, for which we now show the
different incarnations.

B. Validating Keyed MAC Signatures (Tags)

In the simplest trust model, HMAC, keys are pre-shared
among the producer and validators and there is no way to
enlarge the set of trusted keys at run-time without invoking
an on-demand key exchange protocol [14]. Consequently, the
fetchTrustedKey() in Figure 3 is an always failing action.

1 fetchTrustedKey(_, _, Context, Context) :-
2 Context = trustCtx(’preshared’, _, _), fail.

Fig. 3: fetchTrustedKey predicate for the HMAC model.

An interesting point is how the KeyID value, typi-
cally present in HMAC-signed packets, is used. From the
isValidPkt() code it can be seen that this value is never
consulted (it is the second field of a key(Locator, KeyID,
KeyBits) data structure). Prolog will simply try out all trusted
keys until validation succeeds. This means that the KeyId
is just an optimization helping a concrete implementation to
narrow down the number of keys to try.

C. Validating Signatures in the Hierarchical and Schematized
Trust Models

Recall that schematized trust is basically a hierarchical key
certification system with the addition that the name of the
signed key and the name of the signer have to obey some
constraints (i.e., name schemas). This is manifested at the
code level where the core logic of these two trust models
basically differ by one Prolog line expressing this constraint on
names. The code sample in Figure 4 shows the corresponding
fetchTrustedKey() predicate that is used for both trust
models.

1 fetchTrustedKey(DataName,KeyHint,TrustContextIn,TrustContextOut) :-
2 KeyHint = key(KeyLocator, _, KeyBits),
3 TrustContextIn = trustCtx(Model, _, Aux),
4 (Model = ’hierarchical’
5 ;
6 Model = ’schematized’, % Aux has the list of schemas
7 member(schema(KeyLocator, DataName), Aux)
8),
9 ccnFetchCert(KeyLocator, CertPkt),

10 CertPkt = pkt(KeyLocator, KeyBits, _, _, _),
11 isValidPkt(CertPkt, TrustContextIn, TrustContextTmp),
12 TrustContextTmp = trustCtx(Model, KeyList, Aux),
13 TrustContextOut = trustCtx(Model, [KeyHint | KeyList], Aux).

Fig. 4: fetchTrustedKey predicate for the hierarchical and schematized
models. Lines 4-7 refer to the differences in the two models where the name
constraint is applied.

Note the reference to ccnFetchCert(): An actual imple-
mentation will issue an interest packet for the given KeyLo-
cator and receive back a content object whose data is the cor-
responding key bits. Because this packet is signed, the packet
itself is a certificate for that key, which we recursively validate
by calling our main isValidPkt() predicate. Furthermore, in
the real implementation, the certificate that is returned will
be checked for expiration and possibly revocation, among
other properties. In this way, a certificate chain is established
between the original packet to validate our trust anchor.

D. Validating Signatures in the Web of Trust Model

Validating a packet in the web-of-trust model resembles
(code-wise) the hierarchical and schematized models because
a certificate chain is established here as well. However, web-
of-trust is (search-wise) closer to the keyed MAC model in the
sense that we have to blindly search for valid signed keys (a
key ID does not help us here as it points to the signer, while
we have to explore in the other direction): Starting from our
list of peers whom we trust we search for their peers and their
keys (as shown in Figure 5).

The fetchTrustedKey() predicate for the web-of-trust
model is shown in Figure 5. In this example, we use a simple

5

1 fetchTrustedKey(_, Key, TrustContextIn, TrustContextOut) :-
2 TrustContextIn = trustCtx(’webOfTrust’, KeyList, ConfidenceList),
3 member(confid(FriendName, Conf), ConfidenceList),
4 (
5 Conf < 0.5, fail
6 ;
7 ccnFetchFriends(FriendName, FriendList),
8 member(FriendFriend, FriendList), % for all peer’s peers ..
9 not(member(key(FriendFriend,_,_), KeyList)), % if new, do:

10 ccnFetchCert(FriendFriend, CertPkt),
11 CertPkt = pkt(FriendFriend, KeyBits, _, _, _),
12 isValidPkt(CertPkt, TrustContextIn, TrustContextTmp),
13 Key = key(FriendFriend, _, KeyBits),
14 TrustContextTmp = trustCtx(’webOfTrust’, KeyList2, ConfList),
15 C is Conf * 0.9,
16 TrustContextOut = trustCtx(’webOfTrust’, [Key | KeyList2],
17 [confid(FriendFriend, C) | ConfList]),
18 ! % one key suffices (social graph may have loops)
19).

Fig. 5: fetchTrustedKey predicate for the web-of-trust model.

trust computation which factors in a confidence value that
decreases the more remote a signer is in our social graph.
For this trust model, the trust context contains (in its third
position) a list of tuple with a signer’s name and its measure
of confidence.

If during packet or certificate validation no suitable key is
found in our trust context, we will use all signer names in
the confidence list that are trustworthy enough and ask for
their peers’ names through ccnFetchFriends(). For each
new name we fetch the corresponding certificate, validate it,
and add it to our list of trusted keys. In doing so, we add that
new peer and its confidence value to the ConfidenceList.

E. Signing

Signing data packets usually does not warrant much discus-
sion since a running program (producer) typically knows its
identity and key. However, a producer must be careful about
the packet it signs, as a signed content object in CCN can
become a certificate. If a producer were to sign packets with
arbitrary names, some third party could get a certified key that
inherits all trust properties of the producer (in a hierarchical
trust model). One solution is to opt for x509 certificates which
state for which prefix a key can be used. Another path is to
use schematized trust and to impose restrictions on the name
relation between signed key and signer’s key.

A second observation is that a producer can have more than
one key signed by the same signer (e.g., during a key rotation),
or multiple keys from different signers and trust models, as
was pointed out in [20]. Both cases – checking packet names
before signing and finding keys that will permit validators to
verify the signature for some given trust model – are covered
by the code excerpt in Figure 6.

1 getSigningName(NameToBeSigned, TrustContext, [SignerName|Tail]) :-
2 TrustContext = trustCtx(’schematized’, KeyList, Schema),
3 member(schema(SignerName, NameToBeSigned), Schema),
4 (member(key(SignerName, _, _), KeyList), Tail= []
5 ;
6 getSigningName(SignerName, TrustContext, Tail)
7).

Fig. 6: getSigningName predicate.

The important lines are the ones doing the member()
checks, first for finding a suitable schema rule and then
for picking a valid certification path. As a convenience, the
getSigningName() predicate returns that certification path
for the selected key name. Note that for readability of the
high-level code we do not distinguish public from private key
bits in our KeyList data structure.

F. Using Prolog Code to Check Trust Model Properties
A danger with certificate chains is that the validator has

to follow a sequence of “pointers” which cannot be fully
trusted. For example, by negligence, complexity, or malicious
action, loops could arise in a chain. Even with schematized
trust, unsafe configurations can be created, as we show in
Figure 7. (The appendix provides the code that can be used
to demonstrate this problem case.)

T
ru

s
t

M
a
n

a
g

e
m

e
n

t
F

o
rw

a
rd

in
g

Root’s key S

data packet
S

L

Pong’s key
S

L

Ping’s key
S

L

Ping’s key
S

L

sig. of root’s
key (anchor)

1

2

3a

3b

4

compare

?

Signing

(using the private key)

Fetching a certificate

(with the public key)

L Locator (of signer’s key)

S Signature

Fig. 7: A chain of (valid) schematized certificates with a loop that arises when
Ping’s key is signed by both Pong’s key and the Root’s key.

In Figure 7 there are three principals called “Root,” “Ping,”
and “Pong.” We assume that the schema would state that data
packets have to be signed by Pong and that Pong’s key must
be signed by Ping. Finally, Ping’s key has to be signed by
Root and can, optionally (justified by test and redundancy
concerns) also be signed by Pong. The black arrows depict a
signing action while the (dotted) red “upwards” arrows show
the certification chain towards the trust anchor.

Initially, the trust context (upper part of Figure 7) only
contains the trust anchor e.g., in form of a message digest
of Root’s key. Upon validation of a first data packet signed
by Pong, the locator found in that packet is used to retrieve
the signer’s key (step 1). Having retrieved the certificate (and
public key) of Pong’s key, we find another locator, this time for
Ping’s public key. This certificate is fetched in step 2, followed
by a fetch of the Root’s public key in step 3b. Having retrieved
Root’s public key, the validator can compare its digest with
the trust anchor value and complete the verification of the trust
chain. All subsequent packets can be authenticated without
having to fetch any keys if the validator caches the acquired
trust in Pong’s public key.

6

A loop can arises if Pong signs Ping’s key (which is used to
sign Pong’s key, and therefore form the loop)2. This means that
Ping’s key has two certificates: When following the certificate
chain, it could happen that the ccnFetchCert() systemati-
cally returns Pong’s certificate earlier than the certificate issued
by Root (step 3a). This will disrupt the validation process
since we cannot follow the trust chain up to the trust anchor.
It is important to observe that all certificates are valid and no
principle cheated. The loop is a pure configuration error which,
for resource protection reasons must be handled as needed.

In practice, schemas either have to exclude the possibility
that two authorities can (indirectly) sign the same key, or
the schemas have to be scrutinized before putting them in
place. Detecting loops in schema rules is not difficult but
complex enough that this should be checked by programs, not
by humans, which is where schemas expressed in Prolog can
help.

G. Using Prolog to Demonstrate a Problem with Weak Certi-
fication Pointers

One obvious problem in certification chains is that fake data
can be created if trust is subverted. For example, an attacker
can try to insert fake or bogus certificates. Referring to Fig-
ure 7 again, assume that the root of trust starts to misbehave.
A simple attack, which we call certification poisoning, is that
the root principle invents a key for Ping, using random bits,
and then issues a valid certificate for it. The effect is that
when the packet validator traverses the certification chain and
wants to check Pong’s key, two keys can be returned by the
network: The correct one and the bogus one, both having a
valid signature by the trusted Root. If Root now manages to
inject the bogus key (by putting it on a faster upstream node
than the place which has the correct key), this key will be
pulled and cached downwards along the certification chain.
Since the key consists of random bits, neither Pong’s key or
any packets signed by Pong can be validated.

This attack exploits the fact that names are not (crypto-
graphic) identifiers. One must assume that certificates are
fetched by only the name for the validator to acquire an
incorrect key (i.e., one whose name is retrieved from the sig-
nature of Pong’s key). If, however, we add some self-certifying
element to the key’s name, for example using the key’s digest
as the ContentObjectHashRestriction value, this attack
can be prevented. Having retrieved Pong’s certificate we find
an unambiguous key identifier which consists of a name that
is relevant for routing and the key’s hash that is responsible
for selecting exactly the key that was used to sign Pong’s key
instead of the bogus key produced by Root.

We have verified the existence of both problems above loop
case and certificate poisoning attack in Prolog and compared
it to actual implementations. NDN [15], for example, defines
the KeyLocator to be either a name or a digest, but not both
at the same time:

2Good security practice separates data-signing-keys (DSK) from key-
signing-keys (KSK), which is not done here. However, this distinction could
easily be included in the already complex figure by inserting a DSK signed
by Pong, but would not change the loop case discussed here.

1 KeyLocator ::= KEY-LOCATOR-TYPE TLV-LENGTH (Name | KeyDigest)

Our recommendation therefore is that in NDN a signing
key’s name MUST include the key digest in some form to foil
the certificate poisoning attack3.

VI. A Trust Engine Implementation

Trust management and enforcement should be, to some
extent, transparent to the application developer. Given a trust
model, its enforcement should happen more or less automat-
ically beneath the application. In this section we present the
design of the CCNx trust engine which is capable of such
autonomous behavior based on the previous logical design.
We claim that the engine is sufficiently general to be used
elsewhere, e.g., as a co-processor in a forwarder used to filter
invalid or untrusted content before storing it in a content store.
Where appropriate we also refer to internal data structures
(e.g., whitelists) of our implementation to provide insights into
a practical trust engine.

A. Packet Processing Pipeline and Trust-Specific FSM

As illustrated in the previous sections, verification of a
single packet follows a simple and general strategy, regardless
of the trust model required. As exemplified in [20], this
strategy can be implemented as a finite state machine (FSM),
wherein there are three simple states:

1) InspectPacket: Extract the necessary information from
the input packet pairs (i.e., an interest and corresponding
content object).

2) FetchTrustedKey: Obtain the key required to verify the
packet data extracted from the InspectPacket state. The
logic of this state varies depending on the type of trust
model required. Furthermore, this state may mutate the
current trust context for all future packet verification
attempts.

3) VerifySignature: Verify the signature of the input packet
from the InspectPacket state using the trusted key ob-
tained from the FetchTrustedKey state.

Packets are processed in pairs since the validity of a content
object depends on information provided in the corresponding
interest. As shown in Figure 8, these pairs can come from
(a) an input queue (IPQ) connected, e.g., to a lower packet
processing component such as the forwarder, or (b) a pending
packet queue (PPQ) (to be explained later). When the PPQ is
empty, and there exists a packet in the IPQ, the trust engine
will dequeue the first element in this queue for processing.
Before running this packet through the verification FSM
described above, it will first be checked against a whitelist and
blacklist of trust sources. Each entry in the whitelist is a name
(or prefix) and flag ACCEPT or ALLOW, whereas each entry
in the blacklist is just a name (or prefix). If the packet exists
in the whitelist with the flag ACCEPT, the packet is accepted

3In contrast, the CCNx specification (https://tools.ietf.org/html/draft-irtf-
icnrg-ccnxmessages-02) states that “These Validators require a KeyId and
a mechanism for locating the publishers public key (a KeyLocator)”. In this
quote (where we added the emphasis), KeyLocator refers to the name of the
key, not the full data structure as in NDN.

7

(assumed to be correct) without verification. If, however, this
flag is ALLOW, then the packet will be subjected to further
processing by the verification FSM. Conversely, if the packet
is not in the whitelist but in the blacklist, then the packet is
rejected automatically without further processing.

Once a packet reaches the verification FSM, it runs through
each of the aforementioned states as expected. During the
FetchTrustedKey step, it is possible that the key that must be
used for verifying the input packet cannot be obtained locally,
i.e., from the local key store. This occurs if the key has not
yet been requested and is linked from the input packet by a
KeyLocator. In this case, the engine will do the following:

1) Request the desired key using the locator provided in the
content object.

2) Defer the current packet pair under inspection to the
Deferred Packet Queue (DPQ) with the desired key name.

3) Start processing the next packet in the IPQ or PPQ.
The purpose of the DPQ is as follows: When the key needed
to verify a content object cannot be located it must be fetched
from the network. Since this request returns yet another
content object which must be verified, the trust engine must
be able to process packets recursively. Only upon verifying
the key content object response can the trust engine resume
processing the original packet. This recursive behavior is
supported with the DPQ: when a packet is verified, resulting
in acceptance or rejection, the DPQ is scanned for entries that
depend on the outcome of said packet. If there exists such a
packet, they are moved to the PPQ (in the case of acceptance)
or dropped (in the case of rejection).

A trust engine that implements this behavior is shown in
Figure 8. In practice, the actual implementation requires only
the following four functions to operate correctly. These are
labeled in Figure 8.

1) process: This is called to insert a new packet pair into
the trust engine to be processed.

2) accept: This is called when a content object has been
verified and is deemed trustworthy according to the
specific trust model.

3) reject: This is called when a content object fails veri-
fication.

4) request: This is called when additional key(s) need to
be acquired to finish verifying some content object.

B. Runtime Modifications

The engine has a simple command-based interface that
allows command messages to be asynchronously sent from
clients to control its behavior at runtime. A command is
an object with an identifier (string) and payload (data). For
example, to add a trusted root public key with no associated
schema to the current trust context of the engine (e.g., the
key store), a JSON-encoded command with the following
representation is sent to the engine:

{CMD : "ADD_ROOT", PAYLOAD : {
digest : <public_key_digest>,
local : false,
schema : null,

}}

The trust engine API implementation parses the command
message, extracts the identifier and associated options payload,
and performs the required operation (i.e., adding a trust root).
The trust engine API supports a variety of commands to which
it must respond or handle at runtime. A subset of these are
detailed below.
• Whitelist and blacklist modification: This family of com-

mands serves to (add or remove) (whitelist or blacklist)
sources from the basic verification checks. In particular,
the payload for one of these commands contains a set of
keys, each of which map to a set of namespace prefixes
that will be (added to or removed from) the (whitelist or
blacklist) source. Variations of these commands are avail-
able to support name schemas instead of just prefixes.

• Set the trust engine rejection action: The default be-
havior for the trust engine is to automatically discard
messages upon verification rejection since they cannot be
authenticated. Application developers may wish to change
this behavior to, for example, permit such messages to
be considered trusted so as to subject them to further
processing above the trust engine. This command allows
them to do so.

• Toggle FetchTrustedKey recursion depth n: This com-
mand serves to set a limit on the number of recursive
calls a given verification step can take in the trust engine.
This can be used, for example, to enforce that the trust
engine may only attempt to fetch at most n keys to verify
a given content object before giving up and rejecting the
packet.

• Add schema rule to the trust engine context: This com-
mand specifies a new signing key name and content object
name relationship to be added to the set of rules in the
trust context. The syntax for schema rules follows that
which is specified in [20].

The simplicity of the trust engine API (e.g., a single function
call that accepts JSON-encoded commands) is both flexible
and extensible. It enables new commands for behavioral mod-
ification to be easily added as needed. This permits application
developers to experiment with more sophisticated enforcement
policies in the trust engine.

VII. TrustModel Instantiation in Practice

The core verification logic requires trust context from an
application in order to perform automatic verification (on
consumers) and signing (on producers). To specify a model
(or mixture of models), the trust context must convey the
parameters for the key fetch routines as described in the
previous section. The trust engine will execute the verification
and signing logic using the trust context to perform automatic
verification and signing. Thus, all that is required from an
application are (a) the set of trusted keys, and (b) the trust
model and associated key fetch parameters. To illustrate the
ease by which the trust engine can be used, we show how four
general applications may perform tasks (a) and (b) below.
Shared Key: The application provides pre-shared keys as

the trust anchors to the trust engine with the parameter
local=true.

8

Whitelist
and

Blacklist
Trust

Check

Trust Engine

(3) reject

Interrupt or exception

Verification FSM

(2) accept

Output
Queue

Key
Store

(4) request

Inspect

Packet

Fetch

Trusted

Key

Verify

Sig.

Request the required key and

go to next packet in queue

Schematized Trust FetchTrustedKey

Is key

rule in

schema?

Lookup key

certificate

and register

listener

Is key in

the key

store?

deferno yes

rejectreturn
key

IPQ

PPQ

DPQ

(1) process

Fig. 8: A portable CCNx trust engine. The implementation only requires an interface to record interests, process (accept or reject) content objects, and fetch
additional data (e.g., certificates). The trust engine context is stored internally. A configuration interface (not shown) allows the trust model rules to be modified
at runtime.

Subordinated Hierarchy PKI Application Trust: A set of
trust anchors (and their public keys) are collated and
provided to the trust engine. The application will then
provide these keys to the trust engine with the key-fetch
parameter local=false.

Schematized Trust (Restricted Hierarchy): The
application will perform exactly as outlined in the
previous case but will also provide a set of schema
rules to the trust engine with the key-fetch parameter
schema=(schema). The schema is a JSON-encoded
string that describes the rules as listed in [20].

PGP-like Web-of-Trust: The application will provide
the same set of trust anchors as in the hierarchical
case but will additionally provide the confidence
threshold and multiplicative degradation factor
by which keys lose trust. Specifically, it will
provide WOT-threshold=(numerical value) and
WOT-reduction=(numerical value) values which
will be used to enforce the verification rules.

VIII. RelatedWork

There has been substantial past work focusing on the rela-
tionship between names and security in ICN architectures. [10]
studies the requirements for constructing trust associations
between (1) real-world identities (coupled to the Content
Object producers), (2) names, and (3) public keys. In the
related works [6], [10], [12], a self-certifying naming scheme
is proposed for specifying the exact Content Objects which can
be returned in response to an interest. The IKB rule from [9]
specifies that the hash digest associated with a self-certifying
name be specified outside of the name so as to not mix content
identification with trust context.

The concept of automated trust verification with hierarchical
and schematized trust models were first introduced in [19],
[20]. These provide some details about the actual implemen-
tation of a trust engine for NDN (Athena). However, they do
not formulate different trust models in a cohesive design; the
focus is only on that of schematized trust, whereas our trust
engine can incorporate several different trust models into the
same context for verification. Moreover, the implementation
verifies packets one at a time, whereas the CCNx trust engine
described here can handle the asynchronous nature of vali-
dating multiple (unrelated) Content Objects. This allows more
expensive verification procedures to be interleaved as needed.
Lastly, the implementation in [19] will only work in NDN;
it is not easily portable to other ICN architectures due to its
dependence on the NDN naming scheme and packet format.

With regards to attacks exploiting a lack of trust infor-
mation, [5] and [2] both studied Denial of Service (DoS)
attacks (based on producer and router interest flooding) and
probabilistic countermeasures. Content poisoning was defined
in [7], and a countermeasure based on analyzing interest
exclusion4 patterns for cached content to determine whether it
is fake.

IX. Conclusion
This paper has three important contributions. First, it

presents abstract trust model templates which can be used to
design application-specific trust models that are transparently
enforced within the transport stack of ICN-style networks.
Second, by showing executable Prolog code, complex trust
concepts are spelled out and become tangible for an imple-
mentor, also showing pitfalls when applying these concepts.

4Interest exclusion fields are no longer supported in CCN.

9

Third, it provides a detailed description of the design, im-
plementation, and control of a trust engine for CCNx that
is responsible for enforcing application-layer trust semantics.
Our contributions help bridge the gap from theoretical trust
concepts to practical and secure information centric network-
ing. One remaining piece to explore as future work are the
APIs for the trust engine. Ideally, these would be agnostic
to different trust models but also flexible enough to give the
application developer control over trust semantics. Finally, we
plan to conduct overhead and throughput experiments with our
trust engine under realistic application workloads.

References

[1] A. Abdul-Rahman, “The pgp trust model,” in EDI-Forum: the Journal
of Electronic Commerce, vol. 10, no. 3, 1997, pp. 27–31.

[2] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “In-
terest flooding attack and countermeasures in named data networking,”
in Proceedings of the IFIP Networking Conference, 2013.

[3] M. Baugher, B. Davie, A. Narayanan, and D. Oran, “Self-verifying
names for read-only named data,” in Computer Communications Work-
shops (INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE, 2012,
pp. 274–279.

[4] “Content Centric Networking project (CCNx),” http://www.ccnx.org.
[5] A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon: Mitigating

interest flooding DDoS attacks in named data networking,” in Proceed-
ings of the 38th IEEE Conference on Local Computer Networks (LCN),
2013.

[6] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
incrementally deployable ICN,” in Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM. ACM, 2013, pp. 147–158.

[7] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “Dos and ddos in named
data networking,” in Computer Communications and Networks (ICCCN),
2013 22nd International Conference on, July 2013, pp. 1–7.

[8] C. Ghali, G. Tsudik, and E. Uzun, “Needle in a haystack: Mitigating
content poisoning in named-data networking,” in Proceedings of NDSS
Workshop on Security of Emerging Networking Technologies (SENT),
2014.

[9] ——, “Network-layer trust in named-data networking,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 12–19, Oct. 2014. [Online].
Available: http://doi.acm.org/10.1145/2677046.2677049

[10] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker,
“Naming in content-oriented architectures,” in Proceedings of the ACM
SIGCOMM workshop on Information-centric networking. ACM, 2011,
pp. 1–6.

[11] A. Jøsang, “An algebra for assessing trust in certification chains.” in
NDSS, vol. 99, 1999, p. 6th.

[12] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network archi-
tecture,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, pp. 181–192, 2007.

[13] J. Kurihara, C. Wood, and E. Uzuin, “An encryption-based access
control framework for content-centric networking,” IFIP Networking
2015, 2015.

[14] M. Mosko, E. Uzun, and C. Wood, Internet-Draft draft-wood-
icnrg-ccnxkeyexchange-01, Accessed: 2016-05-07. [Online]. Available:
https://github.com/PARC/ccnx-keyexchange-rfc

[15] “Named Data Networking project (NDN),” http://named-data.org.
[16] I. Solis, “CCN 1.0 (tutorial),” in ACM ICN 2014, Sep. 2014.
[17] W. Stallings, “The pgp web of trust,” Byte, vol. 20, no. 2, pp. 161–162,

1995.
[18] C. Tschudin and C. Wood, “File-Like ICN Collection (FLIC),”

Internet Engineering Task Force, Internet-Draft draft-tschudin-icnrg-
flic-00, Apr. 2016, work in Progress. [Online]. Available: https:
//tools.ietf.org/html/draft-tschudin-icnrg-flic-00

[19] Y. Yu, “Athena: A Configurable Validation Framework For NDN Ap-
plications.”

[20] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang et al., “Schema-
tizing trust in named data networking,” in Proceedings of the 2nd
International Conference on Information-Centric Networking. ACM,
2015, pp. 177–186.

Appendix
Prolog permits easy formalization and reasoning about the validity
of certificates according to some given trust model. The code in
Section V (Fig. 1 to 6) expresses in few lines (i) the validation logic
for different trust models, including schematized trust. In the lines
below we also model in Prolog (ii) a packet parser and simulated
signature verification, as well as (iii) an instance of a schematized
trust instance which suffers from the described loop problem (see
also Figure 7).

% Prolog code to demo the loop case for schematized trust

% INSERT HERE all code snippets from Section V

isValidSignature(h(val(Msg)), Signature, val(KeyBits)) :-
% mimic the computation of a signature: add Msg value to Key value
S is Msg + KeyBits,
Signature = s(S).

demoTrustContext(C) :-
C = trustCtx(’schematized’,

[% trust anchor (public key of Root)
key(name([’root’,’key’]), _, val(104))],

[% schema(SignerKeyName, SignedKeyName)
schema(name([’root’,’key’]), name([’ping’,’key’])),
schema(name([’pong’,’key’]), name([’ping’,’key’])), % CAUSE 1!
schema(name([’ping’,’key’]), name([’pong’,’key’])),
schema(name([’pong’,’key’]), name([’pkt’,_]))

]).

% two certificates for the same key of Ping:

ccnFetchCert(N, pkt(N, val(Msg), KeyInfo, h(val(Msg)), s(S))) :-
N = name([’ping’,’key’]),
Msg = 103,
KeyInfo = key(name([’pong’,’key’]), id(102), _),
S = 205.

ccnFetchCert(N, pkt(N, val(Msg), KeyInfo, h(val(Msg)), s(S))) :-
% CAUSE 2: Root’s certificate is fetched AFTER Pong’s cert (above)
N = name([’ping’,’key’]),
Msg = 103,
KeyInfo = key(name([’root’,’key’]), id(104), _),
S = 207.

% one certificate for Pong’s key:

ccnFetchCert(N, pkt(N, val(Msg), KeyInfo, h(val(Msg)), s(S))) :-
N = name([’pong’,’key’]),
Msg = 102,
KeyInfo = key(name([’ping’,’key’]), id(103), _),
S = 205.

loopDemo :-
% this predicate will loop forever (= stack overflow)
% how to break: remove the one schema line, or change order of certs,
% or fetch certs by KeyId, which requires changes to ccnFetchCert()
Msg = val(1000),
Pkt = pkt(name([’pkt’,’678’]), Msg,

key(name([’pong’,’key’]), id(102), _),
h(Msg), s(1102)),

demoTrustContext(Ctx),
isValidPkt(Pkt, Ctx, _).

% data structures used:
%
% pkt(name(CompList), val(Msg), KeyInfo, h(Data), s(Signature))
%
% key(name(CompList), id(KeyId), val(Bits))
%
% trustCtx(TrustModel, ListOfTrustedKeys, Aux)
% where Aux is either SchemaList, ConfidenceList, or _
%
% schema(SignerKeyName, SignedKeyName)
%
% confid(FriendName, Float)

