
Flexible End-to-End Content Security in CCN
Christopher A. Wood and Ersin Uzun

Palo Alto Research Center
Palo Alto, CA 94304

Email: Christopher.Wood@parc.com, Ersin.Uzun@parc.com

Abstract—Content-centric networking (CCN) project, a flavor
of information-centric networking (ICN), decouples data from
its source by shifting the emphasis from hosts and interfaces
to information. As a result, content becomes directly accessible
and routable within the network. In this data-centric paradigm,
techniques for maintaining content confidentiality and privacy
typically rely on cryptographic techniques similar to those
used in modern digital rights management (DRM) applications,
which often require multiple consumer-to-producer (end-to-end)
messages to be transmitted to establish identities, acquire licenses,
and access encrypted content. In this paper, we present a secure
content distribution architecture for CCN that is based on proxy
re-encryption. Our design provides strong end-to-end content
security and reduces the number of protocol messages required
for user authentication and key retrieval. Unlike widely-deployed
solutions, our solution is also capable of utilizing the opportunistic
in-network caches in CCN. We also experimentally compare two
proxy re-encryption schemes that can be used to implement the
architecture, and describe the proof of concept application we
developed over CCNx.

I. INTRODUCTION

In recent years there has been a thrust of research focused
on information-centric networking (ICN) as a future archi-
tecture for the Internet. One of the driving forces behind
this paradigm is the need to make more efficient use of
the available bandwidth. Content Centric Networking project
(CCN), a well-known instantiation of the ICN paradigm,
addresses this problem by decoupling data, or content, from
its source. As a result, content, rather than host and interface
addresses, become directly addressable entities in the network.
A necessary byproduct of this decoupling is that the security
of all sensitive (premium) content must be safeguarded from
each producer to its respective consumers with end-to-end
protection.

Digital Rights Management (DRM) applications are one
particular class of applications that require such end-to-end
content protection. Modern DRM technologies typically em-
ploy some form of hybrid public and private-key encryption
scheme to secure and individualize content for its respective
consumers. Licenses containing the cryptographic information,
such as an encrypted content key that can be used to decrypt
the primary content of interest, are typically issued by the
producer and the encrypted content is traditionally distributed
using Content Delivery Networks (CDNs).

For example, Netflix, the leading provider of online content
in the United States and Canada responsible for roughly 30%
of all downstream traffic, leverages Microsoft’s PlayReady
DRM technology and large-scale content delivery networks

(CDNs) to securely distribute its premium content to all
subscribed consumers [1]. However, most of the existing
DRM solutions are tightly coupled to the host-based Internet
architecture and usually require consumers to interact with
numerous servers for authentication, license acquisition and
retrieval of the protected content.

In this paper, we propose a CCN-friendly architecture for
secure content dissemination that does not rely on trusted
CDNs or traditional PKI cryptosystems. Instead, we leverage
identity-based cryptography to enable simple and intuitive
derivation of public keys that can be associated with users and
their access rights and the use of proxy re-encryption (PRE)
for true end-to-end security. Our full PRE-based architecture
has many benefits in the context of CCN, including minimal
keys to store for producers and consumers (e.g. consumers
need only store two private keys associated with their identity
- one for identity-based encryption and one for proxy re-
encryption), complete end-to-end content security while still
leveraging the use of network caches, and easy accommodation
of intermediary nodes that can perform content re-encryption
on behalf of the producer, among others.

In addition, we study the performance of two significantly
different PRE schemes, one identity-based construction pro-
posed by Green and Ateniese [12] and another based on a
combination of ElGamal encryption and Schnorr’s signature
scheme proposed by Chow et al. [8], to determine the feasibil-
ity and usability of integrating PRE into a DRM application.
We narrow our focus on DRM applications because of the
inherent content security requirements that must be enforced
for all content transferred between producers and consumers.
We then present a proof of concept implementation for the
proposed architecture operating over CCNx, the open source
implementation of CCN, and discuss its advantages and short-
comings.

II. RELATED WORK

Online content providers such as Netflix account for a large
amount of the downstream Internet and mobile network traffic
in North America [18]. Previous research has revealed that
the content delivery strategy driving Netflix’s business model
is partitioned among their own data center, a set of Amazon
EC2 cloud servers, and a plethora of widely-distributed and
strategically located CDNs. Each piece of media streamed
from a CDN node is encoded and DRM protected before
being sent to the consumer’s client device. Currently, Netflix
uses Microsoft’s Silverlight PlayReady DRM technology to

protect its content. Under the hood, PlayReady uses a hybrid
encryption approach that encrypts each piece of content with
a unique symmetric key. The encrypted content is then dis-
tributed over the CDNs, whereas the symmetric key to decrypt
this content is distributed by producers to specific consumers
by first encrypting it with the public key of the target consumer
and then transferring it through a secure tunnel.

Adobe and Spotify use similar DRM technologies with
slightly different hybrid encryption techniques. For example,
Adobe’s DRM technology protects data in transit using a
stream cipher keyed with a symmetric key shared between the
producer and consumer [20]. This session key can be generated
using any standard key exchange technique, such as the Diffie
Hellman key exchange protocol. Spotify also uses a symmetric
key stream cipher to protect data in transit, but adds further
protection by encrypting the data using the AES block cipher
before sending it across the network [10]. The key to decrypt
this data is also encrypted using the stream cipher before being
transferred.

These three DRM technologies share the same properties
that multiple end-to-end messages between the consumer and
producer must be exchanged to access premium content,
and the user devices are required to store many different
decryption keys. In scenarios where the bandwidth between
consumers and producers is expensive or severely limited,
these requirements may impede a consumer’s ability to access
the content.

Cryptographic techniques to solve the problem of secure
cloud storage are quite similar in spirit to those used in DRM
technologies. The goal is to protect content in public clouds
from being inadvertently accessed by unauthorized users. As
such, individualizing the content in the cloud through the use
of hybrid encryption schemes is a popular solution. The pri-
mary difference between these two settings is that consumers
now serve as producers, but use the cloud (e.g. a CDN) to
deliver content to others on their behalf. For the purpose of
individualizing content, attribute-based encryption techniques
show great promise [3], [14] for enforcing fine-grained access
control to content stored in a public location. Other researchers
have turned to PRE as a means of individualizing content in
the cloud. Recently, Xiong et al. [21] leveraged PRE in the
design of a subscription-based content delivery system called
CloudSeal. Their system uses PRE in a hybrid-encryption
design that protects information which is used to encrypt
content before it is stored in a publicly-accessible cloud.
Unfortunately, the security of their PRE variant is not formally
proven using any complexity assumptions in any adversarial
model.

Broadcast encryption is another well known technique for
secure content distribution. In the typical scenario, a provider
will encrypt some message for a subset of users and then
broadcast the ciphertext on a specific channel. Each user
belonging to the original subset and who is also listening
on that channel may then use their secret key to decrypt the
content [16]. In [17], Misra et al. showed how broadcast en-
cryption can be used with an appropriate secret sharing scheme

to preserve content accessibility in the event that producers
are taken offline. Unfortunately, despite this benefit, direct
applications of broadcast encryptions schemes are limited in
that the group of users is finite, which requires content to be
re-encrypted quite often in the presence of a rapidly changing
set of consumers.

III. PRELIMINARIES

A. Content-Centric Networking

Content-centric networking (CCN) is one of several pro-
posed information-centric network designs for the future In-
ternet architecture that decouples data from its origin and
enables relevant content to be pushed and stored throughout
the network to minimize bandwidth consumption. Network
caches and addressable content, rather than addressable hosts
or interfaces, enable this new architecture to reduce the overall
network congestion and latency by keeping content closer to
its intended recipients. CCN also stipulates that all content
is signed by its original producers, thus enabling security
properties that are independent from the channel through
which content moves.

The process by which content is requested is through the
issuance of an interest. The components of an interest are
simply strings and can therefore be used to store any type of
data, including human readable names or an arbitrary pieces
of binary data encoded as URL-friendly strings (i.e. ones in
which the alphabet does not use characters reserved for interest
parsing).

Upon receiving an interest, a router looks for a match
in its content store (CS), which is the cache that persists
content already requested from other consumers. Matching
is done based on content names; complete interest name
matches in the CS allow the router to satisfy the interest
and forward the respective content to the downstream router.
Interests that cannot be satisfied from the CS are recorded
in the router’s pending interest table (PIT) together with
the corresponding downstream interface and forwarded to the
appropriate upstream router based on the forward interest base
(FIB) table. This table is populated using routing protocols,
as in the case of the current Internet design. For efficiency
reasons, multiple interests for the same name are aggregated
at the PIT to prevent duplicate interests being sent upstream.
Once a content matching a PIT entry is received by a router,
the content is cached and sent to all downstream interfaces
associated with the PIT entry. Upon completion, the entry is
cleared,.

B. Proxy Re-Encryption Overview

Proxy Re-Encryption (PRE), first conceptualized by Blaze
et al. [4], is a family of cryptographic schemes in which an
untrusted proxy is allowed to transform a ciphertext encrypted
under Alice’s public key to one encrypted under Bob’s public
key, given an appropriate conversion key provided by Alice.
As an extension of traditional PKI schemes that enables
decryption rights to be selectively delegated, PRE has many
practical benefits that can enable message transfer in secure

email systems, fine-grained access control in secure cloud
storage, and, most importantly for this work, improved DRM
technologies [12].

Formally, a PRE scheme is a tuple of six algorithms
(Setup,KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt)
defined below in general terms for multi-hop schemes. A
single-hop scheme only permits a piece of ciphertext to be
re-encrypted once. In this context, a level 1 ciphertext is the
original encrypted ciphertext, a level 2 ciphertext is the result
of a level 1 ciphertext being re-encrypted, and so on.

– Setup(1k): This procedure takes a security parameter k,
which determines the size of the underlying group upon
which all operations take place, and generates and outputs
the public set of parameters params. This procedure may
also output a master secret key.

– KeyGen(params): Generate and output a private and
public key pair. Identity-based schemes typically specify
a particular identity and master key that are used in the
creation of the private key.

– Encrypt(params, pk, m):Encrypt plaintext m ∈M using
the input public key pk (or identifier) and output the
resulting level one ciphertext c1i .

– ReKeyGen(params, pki, pkj): Generate and output a re-
encryption key rki→j using the public parameters and
public keys for users i and j.

– ReEncrypt(params, rki→j , cni): Re-encrypt the level n
ciphertext cni , which is encrypted under the public key
of user i, to a new level n+ 1 ciphertext cn+1

j using the
re-encryption key rki→j that may then be decrypted by
the secret key of user j.

– Decrypt(params, skj , cnj): Parse the level n ciphertext cnj
to determine n, decrypt the ciphertext accordingly using
the secret key skj , and output the original plaintext m.

Further distinctions between different PRE schemes can
be made based on whether they are unidirectional or bidi-
rectional. In a unidirectional scheme, a ciphertext originally
produced by Alice and then transformed by the untrusted
proxy for Bob cannot be transformed back to one for Alice.
Naturally, a bidirectional PRE scheme allows transformations
to be performed in both directions. The non-interactivity of
a PRE scheme is another important property by which PRE
schemes are characterized. A PRE scheme is said to be
non-interactive if re-encryption keys rki→j can be generated
without input or collaboration with user j.

Following the breakthrough identity-based encryption
scheme from Boneh and Franklin [5], Green and Ateniese
proposed a non-interactive, identity-based, single-hop PRE
scheme in [12]. Built upon bilinear maps, the security of this
particular scheme depends on the computational intractability
of the Decisional Bilinear Diffie Hellman (DBDH) assump-
tion, and has been proven to be CCA-secure in the random
oracle model. Many subsequent efforts have been made to
build upon this work, including replicating the scheme without
the use of pairings [8], proving security in the standard model
[13], and adding conditions which limit when and how re-

TABLE I
COMPARISON OF THE RELEVANT PROPERTIES OF THE TWO SELECTED

PRE SCHEMES USED IN THIS WORK.

PRE Property Identity-Based [12] ElGamal-Schnorr [8]
1. Unidirectional 3 3
2. Non-interactive 3 3
3. Multi-hop 7 7
4. Non-transitivity 3 3

encryption keys may be used [15].
Our selection of the two PRE schemes was motivated

by their relative performance, flexibility, and security. As
one of the core components for our content dissemination
application, it was critically important to pick a scheme that
could support fast client-side re-encryption and decryption.
Given that the only two flavors of efficient PRE constructions
in the literature rely on elements from either identity-based
encryption (i.e. pairings) or ElGamal-type cryptosystems (i.e.
modular arithmetic over groups with large primes), we chose
one scheme from each of these respective categories to test in
the context of our application.

The identity-based variant of our application design uses
the original PRE scheme from Green and Ateniese [12],
which builds upon the construction in [2]. The second PKI-
based application design, which does not rely on pairings, is
based on the work of Chow et al. [8]. A comparison of the
relevant properties for both schemes is shown in Table I, and is
succeeded in the following sections with specific details about
each one that influenced our selection of a single candidate
for our application.

C. Identity-Based PRE Overview

The identity-based PRE scheme (IBP2) from Green and
Ateniese [12] is based on a modified version of Hierarchical
Identity-Based encryption from Gentry and Silverberg [11] and
the underlying identity-based encryption scheme designed by
Boneh and Franklin using the Weil pairing [5]. The public
parameters returned from the Setup() procedure consist of a
generator g (in the symmetric pairing case) and corresponding
element gs, where s is the master secret key msk, as well
as a tuple of hash functions used in the remaining proce-
dures. Since unique identities take the place of public keys
in identity-based schemes, the KeyGen() procedure requires
the public parameters, the master secret key msk, and a
unique identity id to output the corresponding secret key,
skid. Encryption only requires the target recipient’s identity
id, public parameters params, and the actual message m. The
ReKeyGen() procedure must be performed by the entity in
possession of msk and requires the public parameters params,
the source identity idi, and the destination identity idj . The
output of this procedure is the re-encryption key rkidi→idj

.
Re-encryption takes the public parameters params, level 1

ciphertext c1idi
encrypted for the identity idi, and re-encryption

key rkidi→idj
as input and outputs a transformed level 2

ciphertext c2idj
that is encrypted under the identity of user j.

Decryption of this level 2 ciphertext simply requires the public

parameters params, secret key of the identity idj , skidj
, and

the level 2 ciphertext c2idj
.

D. ElGamal-Schnorr PRE Overview

Motivated by the desire to avoid the computational difficulty
of computing pairings to construct PRE schemes, Chow et
al. [8] presented one of the few such constructions in the
literature that does not rely on pairings. Instead, it combines
a “hashed” CCA-secure ElGamal-type encryption scheme
with the Schnorr signature scheme using a token-controlled
approach to enable single-hop re-encryption. Much of the
scheme is influenced by previous PRE proposals, e.g., [9],
[19], and the public parameters consist of a generator g
for the group G ⊂ Z∗q , where the number of bits in q is
equal to the security parameter κ, two parameters l0 and l1
which are polynomial in κ (for a message space that is l0
bits), and a set of hash functions. The consumer key pairs
consist of a pair of two secret keys xi,1,xi,2 and two public
keys pki,1 = gxi,1 ,pki,2 = gxi,2 . The ReKeyGen() operation
generates a conversion key rki→j used to mask the original
ciphertext encrypted with the secret keys of entity i to one
that may be decrypted with only the secret key xj,2 of entity
j. The Encrypt() procedure masks the input message m with
the hash of a group element generated based on the message
and a randomly chosen string of length l0. Concurrently, the
token for this encrypted message is computed based on both
secret keys of entity i (the producer), such that, during the
ReEncrypt() procedure, the influence of these parameters are
canceled out by rki→j so that entity j may use and verify the
token.

The construction of both level one and two ciphertexts are
publicly verifiable and delegator-safe, which means that the
proxy may generate level two ciphertexts after verifying input
level one ciphertexts without revealing or relying upon the
secret keys of either party involved in the transformation.
This is achieved by masking the secret keys with the hash of
their public keys. Finally, the Decrypt() procedure for a level
2 ciphertext for user j extracts the information necessary to
unmask the original plaintext using their secret key skj,2 and
outputs the message.

IV. CONTENT DISSEMINATION ARCHITECTURE

In this section we describe the reference architecture for our
DRM application over CCN based entirely on the identity-
based PRE scheme discussed in the previous section. We use
PRE to obtain strong end-to-end content security. Furthermore,
our design is general enough to be leveraged in any informa-
tion or content-centric networking application.

A. Full PRE-Based Architecture

In an ideal setting, all content would be protected with the
PRE scheme so as to (1) enable effective use of network
caches, (2) prevent key and content leakages (i.e. users ex-
posing decryption keys or the decrypted content), (3) simplify
key management, and (4) improve overall security by true
end-to-end encryption. This ecosystem is captured in Figure

1. With an architecture based entirely on PRE for content
protection, each piece of content would be encrypted once by
the producer using the identity of the respective content name.
Since the producer is the only entity that can generate and
store the corresponding secret key for this identity, the content
remains secure as it is distributed throughout the network.
When a consumer wishes to use the content they would need to
request a corresponding re-encryption key from the producer.
If privacy in terms of content-to-user linkability is a concern,
the interest to request the key and and corresponding content
could also be easily encrypted using the public keys of the
producer and the consumer, respectively.

P

R

R

R

R

R

R

R

C

C

C

C

CCN Router Mesh

(Content Sharing)

Producer

(Encrypt Once)
Consumers

(Decrypt Many Times)

End-to-End Protection

Fig. 1. Secure content distribution architecture context diagram.

After receiving the re-encryption key, the consumer’s DRM
application would re-encrypt the content and store the newly
encrypted content in their device. In the event the device is
corrupted and the original or transformed content are made
publicly available, only the producer who owns the master
secret key or the consumer who possesses the secret key for
the transformed ciphertext may decrypt the content. Therefore,
public disclosure of the content in either encrypted form will
not put the original content at risk.

B. Improved Performance with Relaxed Security

To assess the feasibility of this fully PRE-based architecture
in the context of CCNx [7], the open-source implementation
of CCN by PARC, we implemented both of the PRE schemes
discussed in Section III-B in Java. The identity-based scheme
was implemented using the Java Pairing Based Cryptography
library [6], and the ElGamal-Schnorr scheme was implemented
using standard modular arithmetic operations provided by the
Java BigInteger class. We instantiated each scheme with
security parameters of similar strength - 256 bits for elliptic
curve groups and 3072 bits for the Diffie Hellman groups, both
of which are approximately providing 128 bits of security -
and measured the time to perform the Encrypt(), ReKeyGen(),
ReEncrypt(), and Decrypt() (for level 2 ciphertexts only)
procedures. Our performance results (without pairing pre-
computations) are depicted in Figure 2.

Even though the ElGamal-Schnorr scheme is not based
on bilinear pairings over elliptic curves, the large security

parameter needed to attain equivalent strength lead to worse
performance than the identity-based scheme in our implemen-
tation. In addition, despite the clear difference in performance,
it is still not practical to use either of them to encrypt large
digital media, such as movies or music albums that are MBs
or GBs in size.

This performance impediment led us to consider a hybrid
encryption approach similar to those used by existing DRM
technologies discussed in Section II. Our hybrid scheme uses
the PRE scheme to protect an AES symmetric key for encrypt-
ing and decrypting premium content. The scheme is divided
into a setup and online phase: the setup phase configures the
producer and each consumer with the appropriate information
(i.e. PRE public parameters and consumer secret keys) and
the online phase handles the distribution of content when the
application is live. For brevity, we omit the details of the setup
phase as they can be implemented in a variety of ways, such
as during software installation or device fabrication. The flow
of messages during the online phase are shown in Figure 3. In
this hybrid scheme, we refer to a content tuple (M ′, SK ′) as
a piece of content encrypted with AES and the corresponding
symmetric key that is encrypted with the PRE scheme.

As most PKI schemes use hybrid encryption to protect
large files, and since the overhead from the ReKeyGen()
and ReEncrypt() procedures is virtually negligible if only
performed once for a symmetric key, we chose this encryption
scheme to improve client-side performance without sacrificing
much end-to-end content security. The details of the hybrid
encryption procedures used in the online phase are captured in
algorithms 4, 5, and 6, which list the explicit steps required for
the Encrypt() and ReKeyGen() procedures in the producer and
the ReEncrypt() and Decrypt() procedures in the consumer.

1: procedure PEncrypt(M,k, params)
2: sk

$← {0, 1}k
3: M ′ ← E(K,M)
4: sk′ ← Encrypt(params, N(M), sk)
5: return (M ′, sk′)
6: end procedure

Fig. 4. Producer Encrypt() algorithm. N(M) denotes the name of content
M that would be used when issuing an interest for that particular piece of
content.

1: procedure PReKeyGen(N(M), params, A)
2: KM ← KeyGen(N(M), params)
3: rkM→A ← ReKeyGen(params,KM , N(M), A)
4: return (rkM→A)
5: end procedure

Fig. 5. Producer ReKeyGen() algorithm. N(M) denotes the name of content
M that would be used when issuing an interest for that particular piece of
content, and A is the public identity of the requesting consumer.

C. In-Network Transformation
In our original architecture we assume the producer is

always available to generate a re-encryption key. However, as

1: procedure CDecrypt(params,KA, rkM→A,M
′, sk′)

2: sk′′ ← ReEncrypt(params, rkM→A, sk
′)

3: sk ← Decrypt(params,KA, sk
′′)

4: M ← D(sk,M ′)
5: return M
6: end procedure

Fig. 6. Consumer Decrypt algorithm that makes use of the internal PRE
ReEncrypt() and Decrypt() procedures. Note that E(·, ·) and D(·, ·) refer to
AES symmetric-key encryption and decryption, respectively, and that KA

is the secret key for consumer A generated from the (offline) KeyGen()
procedure.

argued in [17], this may not always be true in the real world.
When the producer is offline, the use of hybrid encryption
using PRE can be leveraged to enable continual access to
content, which is not feasible with traditional DRM tech-
nologies. One way to support this feature would be to intro-
duce intermediary nodes, e.g., retailers or trusted distribution
nodes, between the producer and consumers that serve the
re-encryption keys by generating them on demand. In other
words, such nodes could preemptively request and re-encrypt
content keys on behalf of users so that, in the event the original
producer is offline, the consumer can still obtain their content
re-encryption key from these nodes 1.

PRE also enables us to go farther to have these intermediary
nodes perform the content re-encryption on behalf of the
user. Such nodes equipped with appropriate computational
power can re-encrypt the content, or the symmetric content
encryption-keys in the hybrid case, for individual users. This
would enable all content to be delivered by the network to an
interested consumer to be ready for immediate decryption by
that consumer’s private key.

V. APPLICATION IMPLEMENTATION FOR CCNX

To assess the correctness and implementation efficiency of
the proposed architecture, we developed and tested a prototype
implementation of the full PRE-based architecture presented
in Section IV-A as a Java CCNx application.

In the implementation, there is a single content producer and
multiple consumer processes that are spawned with a running
instance of ccnd, the daemon process that implements the
CCN protocol at the network layer in the CCN stack. Prior
to initializing these processes, the public parameters used in
the PRE scheme are generated and saved to persistent storage
(i.e., a file on the disk). When the producer process is started,
it first reads the public parameters and initializes the rest of
the internal components needed for PRE functions, registers
the ccnx:/p/ prefix, and waits for incoming interests from
consumers. Consumer processes also utilize same public pa-
rameters to initialize the PRE functions.

The remaining five steps in the identity-based PRE
scheme, KeyGen(), Encrypt(), ReKeyGen(), ReEncrypt(), and
Decrypt(), are performed online between the consumer and

1This modification requires that the PRE scheme be multi-hop to enable
level n > 2 ciphertexts to be generated.

(a) Encrypt() time comparison. (b) ReKeyGen() time comparison.

(c) ReEncrypt() time comparison. (d) Decrypt() time comparison.

Fig. 2. Comparison of the Encrypt(), ReKeyGen(), ReEncrypt(), and Decrypt() times for the identity-based scheme from [12] and ElGamal-Schnorr scheme
from [8].

Consumer B Router R Producer PConsumer A

/ccn/example/p/media/M Content not in CS - forward upstream

/ccn/example/p/media/M

C = PEncrypt(M)

Send C downstreamCache C, send downstream
Store C as (M', CK')

 /ccn/example/p/rkey/[E(PK_P,(A_ID, M))] Content not in CS - forward upstream

Interest: /ccn/example/p/rkey/[E(PK_P,(A_ID, M))]

Interest = I, A_ID, M = D(SK_P, I[len(I) - 1])

C = PReKeyGen(M, A_ID)

Send C downstream
Cache C, send downstream1) K_C = D(SK_A, C)

2) Store K_C

M = CDecrypt(K_A, K_C, M', CK')

Use M as needed

/ccn/example/p/media/M

Store C as (M', CK')

 /ccn/example/p/rkey/[E(PK_P,(B_ID, M))] Content not in CS - forward upstream

Interest: /ccn/example/p/rkey/[E(PK_P,(B_ID, M))]

Cache C, send downstream
1) K_C = D(SK_B, C)

2) Store K_C

Retrieve matching content C from cache

Interest = I, B_ID, M = D(SK_P, I[len(I) - 1])

C = PReKeyGen(M, B_ID)

Send C downstream

M = CDecrypt(K_B, K_C, M', CK')

Use M as needed

Fig. 3. Sequence diagram depicting the flow of traffic required to retrieve a piece of content M by two different consumers. The params argument is
omitted from all PRE-related procedures for brevity. Also, the PEncrypt() procedure is highlighted to emphasize that it only happens once for each piece of
media.

the producer processes. Each consumer process requests a
single piece of content from the producer, writes the content
to disk, and then terminates upon completion. To accomplish
this simple task, the consumer and producer complete the
set of interactions below. Note that in all cases the producer
always uses a CCNOutputStream instance to transfer raw
binary data to the consumer, and the consumer uses a paired
CCNInputStream to read this data.

1) The consumer process requests its secret key in the
PRE scheme corresponding to their identity, which is
stored internally as an array of bytes, by encoding the
byte array into a Base64 string AID that is CCN URL-
friendly. The consumer builds and issues the interest
ccnx:/p/sk/AID. Upon receipt, the producer de-
codes the consumer identity and then runs the KeyGen()
procedure using the encoded identity to construct a
secret key KA. Finally, the producer encrypts the raw
bytes of KA using the identity of the consumer and then
sends the resulting ciphertext downstream.

2) The consumer encodes the target content name M as
a Base64 string N(M) and then builds and issues the
interest ccnx:/p/media/N(M). Upon receipt, the
producer decodes the content name N(M) as the last
name component and performs the following check. If
a file with the name N(M) exists, the contents of the
file are read and encrypted in chunks using the PRE
Encrypt() function and then returned downstream. If
the name N(M) does not match the name of a file,
then the producer treats the bytes of N(M) as an
unsigned integer n and generates n random bytes to
be encrypted and returned to the consumer to generate
synthetic traffic.

3) The consumer creates an instance of a key request object
and stores their identity and the name of the target
content N(M) in the two fields. Then, the consumer
serializes this object to a byte array, encrypts the byte
array using the identity of the producer, encodes the cor-
responding ciphertext into a Base64 string C, and finally,
builds and issues the interest ccnx:/p/rkey/C. The
producer then decodes C from the interest, decrypts
the ciphertext using their secret key, and then deseri-
alizes the object to obtain the consumer’s identity and
target piece of media N(M). The producer then runs
the ReKeyGen() step to generate a re-encryption key,
encrypts the raw bytes of the key using the identity of
the consumer, and returns the raw bytes of this key to
the consumer.

4) The consumer finishes the transaction by using the re-
encryption key to re-encrypt the encrypted piece of
content using the PRE ReEncrypt() procedure, and then
decrypts the content using their secret key KA.

Note that we omitted any consumer authentication during
for the first step as it will happen only once when a user
first registers to the system. However, the access control and
authentication in later steps are implicit as only the intended

consumer can decrypt the content with its private key.

VI. PRELIMINARY EVALUATION

By leveraging PRE in the context of CCN we can achieve
virtually the same benefits of current content dissemination
and DRM technologies while reducing the overall infrastruc-
ture requirements and improving the protection of content
during its lifetime. With the ability to cache encrypted content
in the network that can only be decrypted by the producer (they
possess the secret key associated with the identity N(M))
or the consumer upon re-encryption, the proposed scheme is
particularly appealing to ICNs as it can serve individually
encrypted content and take full advantage of in-network caches
at the same time.

The use of PRE also provides strong end-to-end security
for all content. Content objects always stay encrypted during
transport and at rest, including the consumers’ persistent
storage. The only time content objects need to be decrypted is
within the DRM enabled software (e.g., media player) at the
time of consumption. Moreover, this architecture significantly
simplifies key management at consumer devices since only
one key needs to be safeguarded: the user’s secret key.

In our hybrid encryption variant, using an AES key size that
is comparable in security to the PRE scheme would ensure
that the security guarantees are not degraded due to the use
of symmetric encryption. Recall that each symmetric key in
a content tuple that is cached in the network is encrypted
under the public identifier of N(M). Since the producer is
the only entity who possesses the corresponding secret key,
the network is free to cache and transfer this content tuple
in any way necessary. Users are even free to share content
tuples among their own devices or with different users offline.
For a single user, this means that one may transfer content
tuples and wrapped keys from one device to another, both
of which have the user’s secret key, and enjoy access to
them without having to contact the producer. The proposed
solution relies on the proven CCA-security of the identity-
based PRE scheme to enable routers and users to freely
distribute encrypted content throughout the network without
the risking unauthorized access to the content.

The proposed scheme fares well for routers, producers, and
consumers at the same time. Routers need not change oper-
ation or treat encrypted media any differently than ordinary
content, and so there is no performance impact that could
affect the service. Producers can make best use of the caches
in the network without sacrificing the security. As a result,
consumers can enjoy high quality of service with reduced
transmission delays.

In order to be able to decrypt and use a specific piece of
content, a consumer needs to issue an interest for the content
re-encryption key. As shown in Figure 3, such interests may
be sent asynchronously and even before the content interest
to reduce the overall latency. Moreover, in most cases the
consumers may potentially start decrypting and using chunks
of the content without waiting to retrieve the content in its

entirety. This feature is particularly appealing for media distri-
bution applications. Since the symmetric key used to encrypt
the entire piece of content (i.e. all chunks of said content)
only needs to be re-encrypted once using the PRE ReEncrypt()
procedure, the re-encryption overhead is a negligible at around
200ms on a standard personal computer.

VII. CONCLUSION

In this paper, we presented an architecture for secure content
distribution over CCN that leverages proxy re-encryption for
enhanced security and content individualization. It reduces the
overall bandwidth consumption and requires fewer message
transactions than existing solutions. We showed that two
specific PRE schemes, one based based on pairings and the
other not, are still computationally impractical for encrypting
large pieces of content. As a result, a hybrid PRE-based
encryption scheme can be used for secure and efficient distri-
bution of content over CCN today with negligible performance
penalties. Fortunately, with the continuous improvement of
cryptographic primitives, as well as the advances in available
commodity hardware, it is likely that the full PRE-based
scheme with more pronounced security benefits will also be
practical in near future – perhaps just in time to meet the
adoption of a new Internet architecture.

REFERENCES

[1] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker
Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding
and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE
INFOCOM 2012 (2012).

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy
Reencryption Schemes with Applications to Secure Distributed Storage.
In the 12th Annual Network and Distributed System Security Symposium
(2005), 29-43. Full version available at http://eprint.iacr.org/2005/028.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-
Based Encryption. 2007 IEEE Symposium on Security and Privacy, SP’07
(2007).

[4] M. Blaze, G. Bleumer, and M. Strauss. Divertible Protocols and Atomic
Proxy Cryptography. In Proceedings of Eurocrypt 98 1403 (1998), 127-
144.

[5] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pair-
ing. Advances in Cryptology - CRYPTO 2001, Springer Berlin Heidelberg
(2001).

[6] A. De Caro and V. Iovino. jPBC: Java Pairing Based Cryptography. IEEE
Symposium on Computers and Communications (ISCC) (2011).

[7] CCNx Project. Available online at http://www.ccnx.org/. Last accessed:
8/5/13.

[8] S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy
Re-Encryption. Progress in Cryptology - AFRICACRYPT 2010. Springer
Berlin Heidelberg (2010), 316-332.

[9] R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure
Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in
Computer Science Volume 5339 (2008), 1-17.

[10] The Despotify Project (2012). Available online at http://despotify.
sourceforge.net/. Last accessed: 8/1/13.

[11] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography.
Advances in Cryptology - ASIACRYPT 2002. Springer Berlin Heidelberg
(2002), 548-566.

[12] M. Green and G. Ateniese. Identity-Based Proxy Re-Encryption. Applied
Cryptography and Network Security. Springer Berlin Heidelberg (2007).

[13] T. Isshiki, M. H. Nguyen, and K. Tanaka. Proxy Re-Encryption in
a Stronger Security Model Extended from CT-RSA2012. In Topics in
Cryptology CT-RSA 2013. Lecture Notes in Computer Science Volume
7779 (2013), 277-292.

[14] S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial
Cryptography and Data Security. Springer Berlin Heidelberg (2010), 136-
149.

[15] K. Liang, Z. Liu, X. Tan, D. S. Wong, and C. Tang. A CCA-Secure
Identity-Based Conditional Proxy Re-Encryption without Random Ora-
cles. In Information Security and Cryptology ICISC 2012. Lecture Notes
in Computer Science Volume 7839 (2013), 231-246.

[16] J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights
Management using Broadcast Encryption. Proceedings of the IEEE 92.6
(2004), 898-909.

[17] S. Misra, R. Tourani, and N. E. Majd. Secure Content Delivery in
Information-Centric Networks: Design, Implementation, and Analyses. In
Proceedings of the 3rd ACM SIGCOMM Workshop on InformationCentric
Networking (ICN 2013) (2013).

[18] Sandvine, Global Internet Phenomena Report - Spring 2012. Located on-
line at http://www.sandvine.com/downloads/documents/Phenomena 1H
2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf. Last
accessed: 8/1/13.

[19] J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings.
Public Key Cryptography. Springer Lecture Notes in Computer Science
Volume 5443 (2009), 357-376.

[20] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Steal This Movie
- Automatically Bypassing DRM Protection in Streaming Media Ser-
vices. Available online at http://seclab.cs.ucsb.edu/media/uploads/papers/
sec13-final215.pdf.

[21] H. Xiong, X. Zhang, W. Zhu, and D. Yao. CloudSeal: End-to-End Con-
tent Protection in Cloud-based Storage and Delivery Services. Security
and Privacy in Communication Networks. Springer Berlin Heidelberg
(2012), 491-500.

