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ABSTRACT
Content-centric networking is an architecture designed to transfer
named and addressable data from producers to consumers. Data re-
trieval is driven by a simple request and response protocol. A con-
sumer issues a request for named data that is routed by the network
towards the nearest location where this data is stored. Once found,
the corresponding data is returned to the consumer. This data-
centric model is different from the datagram- and stream-based pro-
tocols used to transport data between endpoints in IP networks: In-
stead of being tied to the channel through which data flows, security
and privacy properties apply to data itself. Consequently, privacy
issues in CCN warrant careful evaluation. In this paper, we present
a comprehensive assessment of CCN privacy issues in the presence
of various adversaries. We specify conditions sufficient to achieve
different levels of privacy. We also show that data privacy is more
dependent on requests than responses for data. We conclude that
strong privacy necessitates some form of session- or channel-based
communication, which strongly contradicts the data-centric nature
of CCN. We also discuss how to implement proposed CCN privacy
mechanisms in practice.

1. INTRODUCTION
Named data is the focal point of Content-Centric Networking

(CCN) and related Information-Centric Networking (ICN) archi-
tectures. Instead of transferring data between two endpoints iden-
tified by IP addresses, a CCN endpoint (or consumer) obtains data
by issuing a request (interest) for content1 using its name. The net-
work is responsible for using the name to route this request to the
nearest location that can serve the content. Once the content is lo-
cated, either at the producer or in a router cache, it is forwarded
back to the consumer along the reverse-path of the corresponding
interest.

This communication model has subtle yet important implications
on privacy. Forwarders (routers) and producers match requests to
responses via exact name matching. All interests must carry, at a
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minimum, a name that is used for routing and matching. The im-
plication is that if two consumers wish to fetch the same content
cached in a router, they must issue identical interests for that con-
tent. Thus, an eavesdropper can easily correlate multiple requests
for the same content. Without going further, privacy is already
compromised by the use of equality-based matching and presence
of shared router caches.

At present, the baseline for privacy in the Internet is that all traf-
fic must be encrypted in a forward-secure, end-to-end fashion, e.g.,
as in TLS [22]. Therefore, correlating information across multi-
ple flows and their packets is infeasible (modulo traffic and timing
analysis attacks). Clearly, CCN and related ICN architectures do
not offer this degree of privacy. To the best of our knowledge, this
disparity has not been adequately addressed by the ICN research
community. To this end, this paper analyzes CCN data privacy
issues and shows how requests, responses, and a single request-
response exchange can be made private. The contributions are:
• Privacy analysis of the CCN request and response protocol.
• Evaluation of weak privacy techniques based solely on CCN

names and their secrecy. This can be used to bootstrap stronger
privacy communication techniques.
• Discussion of practical techniques that can address identified

privacy issues.
One of our primary conclusions is that data encryption, by itself,
is insufficient for privacy. Request names must have no correla-
tion with data carried in a response, which strongly contradicts the
name-based model of CCN and other ICNs. This implies that there
must be some mapping between standard CCN names and infor-
mation conveyed to the network. Moreover, in the presence of
powerful adversaries, this transformation cannot be deterministic
since that would lead to frequency analysis attacks. This effec-
tively invalidates caches and is functionally no different from end-
to-end encryption such as TLS in today’s IP-based networks. In
total, we find that, if privacy similar to IP is desired, then many of
the claimed benefits of CCN are lost, barring major architectural
changes made to accommodate enhanced levels of privacy.

The rest of this paper is organized as follows. Section 2 gives
an overview of CCN. Section 3 outlines the concept of data privacy
and presents the threat model. Section 4 assesses what privacy is
possible in the presence of an eavesdropping adversary. Section
5 focuses on the same problems with a significantly stronger ad-
versary. Section 6 shows that weaker forms of privacy can fail in
practice given auxiliary information about content popularity. We
then discuss how to implement different levels of privacy in Section
7. Finally, we conclude with related work in Section 8 and future
work in Section 9.



2. CCN OVERVIEW
Content Centric Networking (CCN) is one of the main ICN ar-

chitectures. Named Data Networking (NDN) [28] is its academic
dual with minor protocol and packet format differences. Therefore,
we focus primarily on CCN in the remainder of this paper. This
section overviews CCN with respect to the latest specifications [19]
and the CCNx reference implementation. Given familiarity with ei-
ther CCN or NDN, it can be skipped without loss of continuity.

In contrast to IP, which focuses on end-points of communication
and their names and addresses, CCN [12, 19] focuses on content
by making it named, addressable, and routable. A content name
is a URI-like [3] string composed of one or more variable-length
segments. To obtain content, a user (consumer) issues a request,
called an interest message, with the name of the desired content.
This interest can be satisfied by either (1) a router storing the con-
tent in its cache or (2) the content producer. A content object mes-
sage is returned to the consumer upon satisfaction of the interest.
Name matching in CCN is exact, e.g., an interest for /facebook/
Alice/profile.html can only be satisfied by a content object
named /facebook/Alice/profile.html.2

Aside from the Name field, interest messages may include the
following fields:
• Payload – a field that lets consumers push data to produc-

ers along with the request.
• KeyIdRestriction – an optional hash digest of the pub-

lic key used to verify the desired content’s digital signature.
If present, the network guarantees that only content objects
which can be verified with the specified key will be returned
in response to an interest.
• ContentObjectHashRestriction – an optional hash

value of the content being requested. If this field exists, the
network guarantees the delivery of the exact content that con-
sumer requests.

Together, all of these fields make up the general “name” of the inter-
est message. Similar to interests, content objects also carry a pay-
load and some additional metadata. However, unlike interests, they
also usually carry an authenticator (digital signature or MAC) used
to assert the correctness of the name-to-data binding. This authenti-
cator allows consumers and routers to verify the authenticity and in-
tegrity of content. Content objects do not need to carry a name if the
corresponding interest carried a ContentObjectHashRestriction
field. This is because the content can be matched to the interest
by computing and checking its hash for equality with the corre-
sponding field in the interest. (This equality check is also used to
authenticate the response.)

There are three types of entities in CCN:3 (1) consumer, which
issues interests for content, (2) producer, which generates and pub-
lishes content to the network, and (3) routers, which forward inter-
est messages and content between consumers and producers. Each
CCN entity maintains two components:
• Forwarding Interest Base (FIB) – a table of name prefixes

and corresponding outgoing interfaces. The FIB is used to
route interests based on longest-prefix-matching of their names.
• Pending Interest Table (PIT) – a table of outstanding (pend-

ing) interests and a set of corresponding incoming interfaces.
An entity may also maintain an optional Content Store (CS) used
for caching. The timeout for cached content is specified in the
ExpiryTime field of the content header. From here on, we use
the terms CS and cache interchangeably.

2Name matching is long-prefix-based in NDN.
3A physical entity, or host, can be both a consumer and producer
of content.

Routers use the FIB to forward interests towards producers and
the PIT to forward content object messages along the reverse path
to consumers. More specifically, upon receiving an interest, a router
R first checks its cache to see if it can satisfy this interest locally
from the cache. When R receives an interest for content named N
that is not cached locally and there are no pending interests for the
same name in its PIT, R forwards the interest to the next hop ac-
cording to its FIB. For each forwarded interest, R stores some state
information in the PIT, including the name of the interest and the
interface from which it arrived, so that content may be sent back to
the consumer. If an interest for N arrives while there is already an
entry for the same content name in the PIT, R only needs to update
the arriving interface. When content is returned, R forwards it to
all of the corresponding incoming interfaces and the PIT entry is
removed. If a router receives a content object without a matching
PIT entry, the message is silently discarded.

3. DATA PRIVACY IN CCN
According to [21], “the common definition of privacy in the

cryptographic community limits the information that is leaked by
the distributed computation to be the information that can be learned
from the designated output of the computation.” In networking and
communication protocols, this notion of privacy refers to the limits
of information leaked by traffic. This is a growing concern in re-
cent years since pervasive monitoring of network traffic was found
to be standard practice. Such eavesdropping is now considered a
fundamental attack on privacy [8]. Other threats to privacy include
correlation among a user’s traffic flows or behaviors, identification
of the user, disclosure of their personal information, and secondary-
use of user information [6].

With the shift from host-based to data-centric communication,
CCN changes how data is retrieved and the way peers communi-
cate. Recall that consumers issue a request for data D with the
name N , which we denote as D(N). In this context, N is the
application name of D. The network name N̄ carried in the wire-
encoded packet and used to forward this request need not be equal
to N . However, in standard CCN, N = N̄ . We use the notation
D(N) and D(N̄) to refer to the data identified by the given appli-
cation and network names, respectively. These requests may con-
tain other information to identify the desired content object, such as
KeyIdRestriction or ContentObjectHashRestriction. In
this paper, we consider these and all other “identifiers” to be con-
tained in N and subsequently encoded in N̄ .

After it is requested,D(N) is carried in a content object message
C(N̄) with the network name N̄ . Note that consumers may use
different network names N̄0 and N̄1 when requesting D(N), in
which case C(N̄0) 6= C(N̄1). This can occur ifD(N) is uniquely
encrypted for each consumer. Conversely, it always holds that if
C(N̄0) = C(N̄1) then both responses carry the same application
data D(N). Recall that it is not a requirement for a content object
to carry a CCN name. However, a content object always carries an
explicit or implicit identifier that can be matched to a value com-
puted from the corresponding interest. For example, if the content
objectC(N̄) does not carry a name, then its hash digest must match
what is provided in N̄ . In this case, we use the same notation for
presentation clarity.

Privacy in CCN must be defined and assessed with respect to
the requests and responses that are conveyed in the network, i.e.,
N̄ and C(N̄). Generally, an adversary Adv may try to recover N
or D(N) from this information. Our goal in the remainder of this
paper is to show what type of privacy is attainable based on the
properties of N̄ and C(N̄). Before doing so, we specify our notion
of data privacy and how it differs from its IP counterpart. We then



describe the adversarial model and define the privacy terms used in
the remainder of the paper.

3.1 Separating Privacy and Anonymity
In general, privacy is framed in terms of the endpoints that partic-

ipate in a data exchange rather than a property of the data itself. For
example, privacy might mean that the communicated data leaks no
private information about the user. Another notion of privacy might
be that identities of communicating endpoints (e.g., IP addresses,
host names, user-IDs) remain hidden. We claim that elements of
data privacy and personal privacy, or anonymity, are inappropri-
ately mixed in general discussions of privacy. Therefore, we sep-
arate these two notions and focus solely on problems surrounding
data privacy.

To show why this separation is useful, consider the following
scenario. Suppose an adversary controls a pair of consumer- and
producer-adjacent routers. Any (unmodified) requests and responses
forwarded through the compromised routers link the consumer and
producer. The adversary learns that (a) the consumer is fetching
data from the producer or (b) the consumer and producer are com-
municating. However, we do not consider this a data privacy
leak because consumer and producer linkability does reveal infor-
mation about data transported between them.

Assuming appropriate protection of requests and responses (as
discussed in the remainder of this paper), consumer and producer
linkability reveals no more than what is revealed by clients and
servers engaged in a TLS session in today’s Internet. Although the
consumer and producer do not have anonymity, their traffic remains
private. If anonymity is required, a TOR-like mechanism such as
ANDANA [7] or AC3N [24] can be used to decouple consumers
from producers. In the rest of this paper we focus solely on the
problem of data privacy.

3.2 Adversarial Model
We now define the adversarial model against which privacy will

be assessed. According to [6], there are at least three types of ad-
versarial goals:

1. Correlate: Determine whenever any two consumers retrieve
the same application data D(N).

2. Identify: Discover or recognize that D(N) was retrieved.
3. Learn: Obtain information about D(N).

Learning information about D(N) from N̄ or C(N̄) is harder than
a correlation or identification attack. If an adversary learns infor-
mation about D(N) given C(N̄) or N̄ , then it can also perform a
correlation or identification attack. The converse is not necessarily
true. We denote the adversaries with these goals as AdvC , AdvI ,
and AdvL, respectively.

An adversary with any subset of these goals may have differ-
ent capabilities. One type might only be able to observe a single
request and response from a consumer, while another type might
observe all traffic from a set of consumers. One example of the
latter would be a malicious Wi-Fi hot spot observing traffic of all
hot spot users. Adversaries are also classified based on whether
they are off-path or on-path, i.e., honest-but-curious (HbC) routers.
An adversary that can only capture traffic without being on the
consumer-to-producer path has a distinct disadvantage compared to
the one that forwards traffic between a consumer and producer. For
instance, an off-path adversary eavesdropping on an encrypted link
can only observe encrypted traffic. Conversely, routers incident to
that encrypted link can observe the original packets. In that case,
the adversary can correlate requests with responses more easily and
can also determine when two downstream consumers request iden-
tical or related content. A more powerful adversary controls mul-

Table 1: Adversary examples

Goals
Capabilities Correlate Extract
Eavesdropper A user spying on

encrypted traffic be-
tween a hotspot and
neighbors with the
goal of identifying
traffic patterns and
commonalities.

A user spying on
encrypted traffic to
identify specially
marked or flagged
content.

On-path HbC An access point
gathering statistics
about how fre-
quently content is
accessed.

An access point cen-
soring or restricting
content based on its
name or payload.

Distributed
on-path A pair of access

points adjacent to
consumers and a
single producer try-
ing to discern when
certain content is
requested and by
whom.

A pair of access
points logging when
specific content is
requested.

tiple routers on the consumer to producer path. For example, an
adversary which controls routers adjacent to communicating con-
sumers and producers can easily learn when a particular consumer
is requesting a specific content by simply inspecting the name.

We consider these capabilities to be characteristic of three dis-
tinct adversaries: an off-path attacker, a single on-path honest-but-
curious router, and a collection of at least two (distributed) on-path
honest-but-curious routers. Table 1 shows examples of these adver-
saries.

3.3 Response Privacy
Response privacy is about trying to prevent information leakage

from data responses. Ideally, an adversary should learn nothing
from a response. We use a game-based definition to capture this
notion of privacy. Let NA and NN be the set of application and
network names, respectively, that can be assigned to data and bound
to content packets. For every request for D(N), N ∈ NA, there
is a function r(N) that generates and returns a response C(N̄),
where N̄ ∈ NN (i.e., a network name for D(N)). In this game,
Adv is given access to r(·) via an oracle Or(·). Upon receipt of a
nameN ,Or(N) returnsC(N̄). Adv also has access to an oracle to
compute the inverse of r(·), O−1

r (·), which, upon receipt of C(N̄)
will return N = r−1(C(N̄)). The game works as follows.
• The challenger initializes and gives Adv access to Or(·),
O−1

r (·), and NA.
• Adv issues a series of application names N0, . . . , Ni−1 to
Or(·) and obtains C(N̄)0, . . . , C(N̄)i−1, respectively.
• Adv generates two names N0

i 6= N1
i and sends them to the

challenger. The challenger then generates a random bit b and
returns C(N̄)b = r(Nb

i ) and sends it back to Adv.
• Adv continues to query Or(·) (including, if needed, names
N0

i and N1
i ). Adv can also query O−1

r (·) for any data re-
sponse (except C(N̄)b). When done, Adv outputs a single
bit b′.
• The game outputs 1 if b = b′ and 0 otherwise.

We denote the output as DataGame(Adv, r). Adv wins if DataGame(Adv, r) =
1. We also consider one other variant of this game where Adv can-
not access either oracle, denoted as LIMDataGame(Adv, r).

We define privacy with respect to the function r(·), e.g., data
is private with respect to correlation attacks if it is generated by a
function r(·) that is also secure against correlation attacks.



DEFINITION 1. r(·) is secure against correlation attacks if for
any probabilistic polynomial time (PPT) Adv it holds that

|Pr[DataGame(Adv, r) = 1]

− Pr[DataGame(Adv, r) = 0]| ≤ ε(λ)

for security parameter λ and where Adv = AdvC .
Similarly, r(·) is secure against leakage and identification at-

tacks if for any PPT Adv it holds that

|Pr[LIMDataGame(Adv, r) = 1]−
Pr[LIMDataGame(Adv, r) = 0]| ≤ ε(λ)

for security parameter λ where Adv ∈ {AdvL,AdvI}.

We now define weak and strong response privacy with respect to
correlation and leakage privacy.

DEFINITION 2. A response has weak privacy if it is generated
by a function secure against leakage and identification attacks. A
response has strong privacy if it has weak privacy and is generated
by a function secure against correlation attacks.

3.4 Request Privacy
Similar to response privacy, request privacy is about information

leaked by a network name. However, the contents of a response
may compromise the privacy of the corresponding request. This
is possible if C(N̄) reveals information about N or D(N), e.g.,
if C(N̄) is part of a well-known media file. This complicates our
notion of request privacy since we must also assume Adv can ob-
serve a response associated with each request. Specifically, let Adv
be an adversary similar to AdvI whose goal is to determine D(N)
given N̄ (i.e., to recognize that name N̄ corresponds to some data
item D(N)). We assume that application names are transformed
by some function q(·, ·) to a network representation before interests
are issued. We model this transformation as q : NA × N+ → NN ,
where NN is the set of network names. (We require |NA| ≤ |NN |.)
The second parameter (from N+) denotes the length of the appli-
cation name prefix that is not modified by the transformation. For
example, q(/a/b/c, 1) would translate the suffix /b/c but leave
the prefix /a/ intact. In the current CCN model, q(·, ·) is simply
the identity function: an application name N is the same name that
would be carried by an interest in the network. Clearly, this is prob-
lematic for privacy.

We now define a request indistinguishability game. In it, Adv
is given access to q(·, ·) via an oracle Oq,i∗(·) that computes the
transformation after segment i∗ of the name. That is, given a name
N , Oq,i∗ returns N̄ = q(N, i∗). Adv also has access to an oracle
to compute the inverse of q(·, ·), O−1

q,i∗(·), which, upon receipt of
N̄ returns N = q−1(N̄ , i∗). The game proceeds as follows.
• The challenger initializes and gives Adv access to Og,i∗(·)

and O−1
g,i∗(·). Adv is also given NA and NN .

• Adv issues a series of names N0, . . . , Nj−1 to Oq,i∗(·) and
collects the results N̄0, . . . , N̄j−1.
• Adv presents a pair of names N0

j and N1
j to the challenger.

It is required that the first i segments ofN0
j andN1

j are iden-
tical. The challenger generates a random bit b and returns
N̄b

j = q(Nb
j , i
∗) to Adv.

• Adv continues to make queries to Oq,i∗(·). Adv can also
issue a request for any name as well as query O−1

q,i∗(·) with
transformed names except N̄b

j . Next, Adv outputs a single
bit b′.
• The game outputs 1 if b′ = b and 0 otherwise.

We denote the output as NameGame(Adv, q). Adv succeeds if
NameGame(Adv, q) = 1. We also consider a variant of this game
where Adv has no access to the oracles. In this case, Adv re-
lies solely on the response from the challenger and its queries to
the network when making its decision. We refer to this as the
INDNameGame.4 We use it to define name privacy with respect
to q(·, ·).

DEFINITION 3. q(·, ·) is secure against correlation attacks if
for any PPT Adv it holds that

|Pr[NameGame(Adv, q) = 1]−
Pr[NameGame(Adv, q) = 0]| ≤ ε(λ)

for security parameter λ where Adv = AdvC .
Similarly, q(·, ·) is secure against leakage and identification at-

tacks if for any PPT Adv it holds that

|Pr[INDNameGame(Adv, q) = 1]−
Pr[INDNameGame(Adv, q) = 0]| ≤ ε(λ)

for security parameter λ where Adv ∈ {AdvI ,AdvL}.

We now define weak and strong request privacy.

DEFINITION 4. A request has weak privacy if it is secure against
leakage and identification attacks. A request has strong privacy if
it has weak privacy and is secure against correlation attacks.

3.5 Communication Privacy
If a request and response are both private, then the entire ex-

change is private. As before, there is both a strong and weak form
of communication privacy. We define both with respect to request
and response privacy as follows.

DEFINITION 5. A request and response have weak communi-
cation privacy if at least the request and response have weak pri-
vacy. Similarly, a request and response have strong communication
privacy if both the request and response have strong privacy.

4. PRIVACY AGAINST EAVESDROPPERS
Eavesdropping is the weakest attack on privacy. An eavesdrop-

ping adversary might not be able to capture any packet at will and
may not be able to observe all request and response pairs. It can,
however, collect some traffic for offline analysis. In this section we
show how this simple capability has strong implications on protec-
tion mechanisms for mitigating the main privacy threats outlined in
Section 3.

4.1 Data Generation Functions and Response
Privacy

Privacy against leakage and correlation attacks for responses is
closely related to the concepts of indistinguishable and chosen-
ciphertext-attack (CCA) security [13]. We show this in Theorems
1 and 2.

THEOREM 1. Responses must be encrypted with IND-secure
encryption to have weak privacy.

PROOF. We define r(·) in LIMDataGame to be an IND-secure
encryption function over generated data. To show that responses
are secure against leakage attacks, we must show that Adv only
4This variant corresponds to Adv that does not possess offline com-
putation resources.



Algorithm 1 SuffixHash

Input: N , i, F (·)
Output: N̄
1: N̄ = N [1 : i], l = |N |
2: for j = i + 1→ l do
3: N̄ [j] = F (N [j])
4: end for
5: return N̄

wins the LIMDataGame with probability negligible in λ. In this
case, Adv generates and submits N0 and N1 to the challenger
which generates a random bit b, and returns Db = r(Nb), as be-
fore. Now, consider an alternate IND-secure encryption function
h(·) that encrypts N0 or N1 instead of data to which these names
are bound. Since there is a one-to-one correspondence between
names and data (i.e., N0 and N1 are bound to D0 and D1, re-
spectively), encrypting D0 or D1, using h(·), is no different from
directly encrypting N0 or N1, using r(·). Therefore, Adv’s proba-
bility of successfully guessing b by examining Db is no more than
its probability of correctly guessing b by examining encrypted N0

and N1. The latter is bounded by the probability of Adv correctly
guessing b in the IND-secure encryption game, which is negligi-
ble.

THEOREM 2. Responses must be encrypted with CCA-secure
encryption to have strong privacy.

PROOF. We define r(·) in DataGame to be a CCA-secure en-
cryption function over generated data. As in the proof of Theorem
1, names form a one-to-one correspondence with data. Thus, there
is no difference between encrypting names or corresponding data
using r(·). Also, if r(·) were to encrypt names, then DataGame
would be identical to the standard CCA-secure encryption game.
Therefore, since the probability of Adv winning such a game is neg-
ligible in λ, it follows that Adv’s probability of winning DataGame
is also negligible in λ.

4.2 Name Transformations & Request Privacy
Information leaked from the request gives Adv some advantage

in winning NameGame and INDNameGame. Therefore, to as-
sess the capabilities of Adv we must capture information leaked
by q(·, ·). To begin, observe that the vanilla CCN identity func-
tion q(·, ·) provides no privacy. Since the identity function does not
change names in any way. Adv’s probability of correctly matching
the challenge name to one of its inputs is always 1.0.

Clearly, the identity function is a trivial transformation, so we
explore alternatives. Transformation functions may operate on one
or more name segments at a time. For example, consider the trans-
lation function in Algorithm 1. F is a cryptographic hash function,
which transforms each segment after a given prefix segment num-
ber into its hash digest. We call this type of transformation is
structure preserving since it does not change the hierarchy of name
segments; it only changes each name segment value. A transfor-
mation is not structure preserving if it modifies hierarchical infor-
mation in a name. For example, the transformation in Algorithm
2 is not structure preserving. This is because it replaces the suffix
after index i with the hash of that suffix. Thus, any names that have
more than l > i segments will always be transformed into a name
with exactly (i+ 1) segments.

A transformation is uniform if, for every input, it produces out-
put of the same length. This means that uniform structure preserv-
ing transformations transform each individual segment of a name
to some fixed-length value. Conversely, a uniform non-structure-
preserving transformation yields suffixes of equal length.

Algorithm 2 SuffixHashFlatten

Input: N , i, F (·)
Output: N̄
1: N̄ = φ, l = |N |
2: for j = 1→ i do
3: N̄.Append(N [j])
4: end for
5: N̄.Append(F (N [i+ 1]|| . . . ||N [l])
6: return N̄

We now consider some guiding criteria for achieving different
levels of request privacy.

THEOREM 3. Weak and strong request privacy transformations
are uniform and non-structure-preserving.

PROOF. Assume that q(·, ·) is a transformation that is neither
uniform nor structure-preserving. However, it enables weak and
strong request privacy. Let N0 and N1 be two Adv-chosen names
with different numbers of segments. Upon receipt of N0 and N1

in NameGame, the challenger returns N̄b = q(Nb, i∗). Since
|N0| 6= |N1|, it is trivial for Adv to determine b since either
|N̄b| = |N0| or |N̄b| = |N1|. This contradicts the assumption
that q(·, ·) provides strong and weak privacy.

Now consider N0 and N1 that have the same number of name
segments but, for at least one segment i, |N0[i]| 6= |N1[i]|. Upon
receipt ofN0 andN1 in NameGame, the challenger returns N̄b =
q(Nb, i∗). To determine b, Adv looks for the segment i where
|N̄b[i]| = |N0[i]| and |N̄b[i]| 6= |N1[i]| (or vice versa). This ex-
ists since q(·, ·) is not a uniform transformation. Therefore, q(·, ·)
does not provide strong or weak privacy since Adv can always win
NameGame.

We conclude that structure-preserving transformations offer nei-
ther weak nor strong request privacy. Taking this into considera-
tion, there are at least two types of cryptographic primitives we can
use to build transformations suitable for request privacy: hash and
encryption functions. Hash functions are uniform by definition.
However, encryption functions are not necessarily uniform. There-
fore, encryption-based transformations must involve some form of
padding to ensure uniformity.

Consider the SuffixHashFlatten transformation in Algorithm 2.
This function replaces the suffix of the input name with its hash. In
practice, however, using F does not yield request privacy. Since F
is a publicly computable function, the unpredictability (entropy) of
its output is directly related to the entropy of its input.

Let x ∈ X denote an element in the support of a random variable
X . Traditional Shannon entropy H of X is defined as

H(X) = −
∑
x∈X

P (X = x) log(P (X = x)).

The chain rule is useful to quantify entropy lost when new infor-
mation is presented. Formally, the entropy of X , if conditioned
on the entropy of Y , can be decreased by at most the latter, i.e.,
H(X|Y ) = H(X,Y ) − H(Y ), where H(X,Y ) is the joint en-
tropy of X and Y defined as

H(X,Y ) =

−
∑
x∈X

∑
y∈Y

Pr(X = x, Y = y) log(Pr(X = x, Y = y)).

This formulation can be generalized to support computing the con-
ditional and joint entropy of an arbitrary number of random vari-
ables. With it, we can quantify the entropy of names if we treat in-
dividual name segments as Discrete Random Variables (DRVs) and



an entire name as a sequence of DRVs. For example, names of k
segments (or components) can be viewed as a sequence of k DRVs.
By using a large sample set of names, we can compute the entropy
of the i-th segment DRV as well as its conditional entropy based
on all j < i segment DRVs. As input data we used the Cisco URI
dataset available from [1]. It consists of 13, 549, 122 unique URIs.
The average length of each URI is 57.4B with median 52B and
standard deviation 33.182B. Across all URIs, the average number
of segments is 6.67 with median length 6 and standard deviation
2.212 segments. Using this dataset, compute the entropy of indi-
vidual name segments. The results, which are plotted in Figure 1,
show that single-segment entropy is skewed with the peak at the 5th
name segment. When name segments are considered in unison the
results are quite different. Figure 2 shows how conditional entropy
significantly degrades as more name segments (components) are
considered. The implication is that the prefix of a name leaks a sig-
nificant amount of information about its suffix. While this dataset
may not be representative, we believe that results would be similar
for larger and even more diverse datasets.

Figure 1: Single component entropy

Figure 2: Joint and conditional across multiple segment entropy

These results lead us to conclude that (parts of) content names
have very little entropy and are highly predictable. This is an in-

tuitive result since URIs are meant to be meaningful and therefore
predictable. Thus, we need strong randomness guarantees for the
name translation function. It must not leak any information about
the input application names. Consequently, it must be at least an
IND-secure encryption function. Or, more generally, it must be
a cryptographic pseudorandom function (PRF). PRFs are derived
from PRF families that take additional inputs, such as a random
seed or key to produce a specific PRF. Someone with knowledge of
this additional input can compute the output of the PRF for any
input since these functions are deterministic. For weak request
privacy, the PRF cannot be computed by Adv. Otherwise, Adv
could compute the PRF value without the oracle and easily win
NameGame. This is captured in the following theorem.

THEOREM 4. A name transformation function must be a PRF
to enable weak request privacy.

PROOF. The proof follows from the discussion above. If the
transformation is a PRF then Adv cannot compute the transforma-
tion output without the oracle. Moreover, by the properties of the
PRF, the outputs are independent and uniformly distributed across
the range of the function. This means that Adv’s probability of dis-
tinguishing the translation of N0 from N1 is negligibly small.

One additional criteria for request privacy is that the response
must also be encrypted. If the responses are not weakly private
then they may reveal information about the data and application
name. Consequently, a request could identify specific application
data.

We now make two final remarks with respect to the translation
function. First, it must be easily invertible so as to let the pro-
ducer determine N from N̄ . Thus, it should be a cryptographic
pseudorandom permutation (PRP), which is an invertible PRF. Sec-
ond, PRFs and PRPs are length-preserving by definition. This
means that they are not uniform, which violates our previous crite-
ria. There are two ways to make the translation uniform: (1) com-
pute the PRP of the cryptographic hash of N (i.e., PRF (F (N)))
or (2) pad the input prior to translation. We discuss (2) in Section
7.3. For option (1), it is reasonable to expect the producer to pre-
compute a hash table that maps F (N) to N . This would allow the
producer to determine the pre-image of F (·).

4.2.1 Strong Request Privacy
In practice, a PRF is insufficient for strong request privacy. Since

PRFs are deterministic, an adversary with oracle access can check
the challenger’s response and always win. Ideally, the oracle’s out-
put should always be randomized and reveal nothing about the in-
put. In practice, this means that the oracle must provide seman-
tic security for its outputs [13]. Such an oracle will never, with
overwhelming probability, produce the same output given the same
input. This is captured in the following theorem.

THEOREM 5. Semantically secure encryption is necessary for
strong request privacy.

PROOF. Let q(·, ·) be a transformation that is semantically se-
cure [13]. Therefore, access to Oq,i∗(·) does not aid Adv in
NameGame. Moreover, since q(·, ·) behaves as a PRF, Adv’s ad-
vantage in distinguishing N̄0 and N̄1 is bounded by ε(λ). There-
fore, q(·, ·) provides strong request privacy.

5. ON-PATH HBC ADVERSARIES
We now turn to on-path HbC adversaries that can observe re-

quests and responses in transit between consumers and producers.



Recall that communication privacy considers both the request and
response of a data exchange. The composition of these elements
determines the achievable degree of privacy. In Section 3.3, we
showed that weak response privacy requires an IND-secure encryp-
tion scheme. Similarly, in Section 3.4, we proved that weak request
privacy requires at least a name translation function using a keyed
PRF. For strong privacy, requests and responses require a CCA-
secure (semantically secure) encryption scheme. These composi-
tion rules are reflected in the following corollaries.

COROLLARY 1. A request-response pair have weak communi-
cation privacy if the latter is protected by an IND-secure encryption
scheme and the former is transformed by a keyed PRF.

COROLLARY 2. A request-response pair has strong communi-
cation privacy if the former is transformed using a CCA-secure en-
cryption scheme and the latter is protected using a similar scheme.

Note that our definitions do not depend on the exact capabilities
of Adv. For example, consider the strongest adversary that controls
every router on the path between multiple consumers and a single
producer. If requests and responses are strongly private, Adv can-
not succeed in a correlation, identification, or leakage attack. Adv
can only link the communicating parties. As discussed in Section
3.1, this is more of an issue of anonymity than privacy.

6. AUXILIARY INFORMATION
Weak request and response privacy is attainable only up to a cer-

tain extent. If Adv has additional information about requests or
responses, it can gain an advantage in weak privacy games. This
is because such games permit correlation, which leaks information
about content. Suppose that Adv has some a priori information
about the popularity of some content. Adv can use frequency of
requested content and popularity of known content to gain a non-
negligible advantage in winning the game.

In more detail, consider request privacy in the presence of auxil-
iary information. We assume that Adv can eavesdrop on links and
thus learn requests and responses. Let L be the set of links that Adv
controls and let Peek(L) be a function that returns a packet from
one of those links.5 Let Q(N) and R(N) be sets of requests and
responses, respectively, for content with name prefix N . We model
mappings from Q(N) to R(N) as a weighted and directed bipar-
tite graph with edges from Q(N) to R(N). An edge (Q,R) with
weight l, where Q ∈ Q(N) and R ∈ R(N), means that request
Q returns response R with probability l/|R(N)|. In effect, weight
indicates popularity of a given request-response pair.

In this model, request privacy is only possible if the in-degree
(deg−) for every R and the out-degree (deg+) for every Q are
equal and the weights of every edge are equal. This means that
auxiliary information (frequency and popularity) does not help Adv
distinguish between two different responsesR andR′ since each is
equally likely to be the output from a randomly chosen request.
This leads to the following observation.

THEOREM 6. Weak request privacy requires that:
1. deg+(Qi) = deg+(Qj) for all Qi, Qj ∈ Q(N).
2. deg−(Ri) = deg−(Rj) for all Ri, Rj ∈ R(N).
3. The distribution of edges from Q(N) to R(N) is uniform.
4. Every edge from Q(N) to R(N) has equal weight.6

5Note that this is not the same as Adv accessing either oracle in
request or response privacy games. Also, Adv can only peek on
unencrypted links.
6If the weight were not uniform then some responses would be
more popular than others. This is what we exploit when construct-
ing a distinguisher in the proof.

PROOF. Assume Adv has additional information about R(N),
e.g., that the edge distribution from Q(N) to R(N) is not uni-
form. We need to show that Adv can build a distinguisher D that
wins NameGame with probability greater than ε(λ). Let k =
max{1, d|Q(N)|/|R(N)|e}, be the expected in-degree for each
response R ∈ R(N). That is, for a uniform edge distribution, k is
the number of requests that map to each response. LetD be a distin-
guisher created using Peek(L) and given to Adv in NameGame.
D observes the network using Peek(L) to determine the frequency
of individual requests. Adv runsD for a polynomial amount of time
in order to collect this frequency information. Then, Adv samples
two requests (names) Q0 and Q1 with the lowest and highest prob-
abilities, respectively, from its a priori known distribution. Specif-
ically, if Pr[Qi] is the popularity of a given name (query) Qi, then
Q0 and Q1 are chosen as:

Q0 = arg minQi
Pr[Qi]

Q1 = arg maxQi
Pr[Qi]

Adv then provides N0 and N1 – the names of Q0 and Q1 – to the
challenger, which responds with Nb. Upon receipt, Adv queries D
with Qb, obtained from Nb, to determine the relative frequency f
of Qb based on the collected frequency statistics. If f > k/R(N),
then Adv outputs b′ = 1; otherwise, it outputs b′ = 0.

The winning probability can be expressed as:

Pr(b′ = b) = Pr(b = 1 ∧ b′ = 1) + Pr(b = 0 ∧ b′ = 0)

Using Bayes’ Theorem, this can be rewritten as:

Pr(b = 1 ∧ b′ = 1) + Pr(b = 0 ∧ b′ = 0) =

Pr(b = 1) Pr(b′ = 1|b = 1) + Pr(b = 0) Pr(b′ = 0|b = 0)

From the construction of D, it follows that Pr(b′ = 1|b = 1) =
Pr[Q1] and Pr(b′ = 0|b = 0) = Pr[Q0]. Let p1 and p0 denote
these respective probabilities. Also, since b is sampled at random,
Pr(b = 1) = Pr(b = 0) = 0.5.

In order for Adv to win INDNameGame, it must be true that
0.5p0+0.5p1 > k/D(N)+ε(λ). We can rewrite this as p0+p1 >
2k/D(N)+ε(λ), where p0 and p1 are the minimum and maximum
probabilities in the popularity distribution. Clearly, there are distri-
butions where this inequality holds for any k. One example is the
Poisson distribution.

Under this constraint, weak request privacy is difficult to achieve,
since some requests are always more popular than others. More-
over, since content popularity is not controllable by the producer, it
cannot expect to enforce uniform popularity.

Implications.
The frequency analysis attack succeeds because responses are

not generated with equal probabilities. An intuitive way to mitigate
the attack is to ensure that every response is unique. One way to
realize this is by requiring a producer to encrypt each response sep-
arately and uniquely. However, this immediately obviates the main
benefit of caching.

An alternative is for a router to individually re-encrypt cached
content before passing it downstream. (Thus, it would be infeasible
to correlate content coming into a router with another content later
leaving the same router.) Unfortunately, this seems to be possible
only via so-called proxy re-encryption or re-randomizable encryp-
tion techniques which are typically based on public key schemes,
e.g., ElGamal. More importantly, these techniques would require
the entire content to be re-randomized, which is likely to be pro-
hibitively expensive. Specifically, this would rule out the use of



traditional (and efficient) hybrid encryption. (In hybrid encryption,
data is encrypted using an efficient symmetric cipher with a one-
time key, and only the latter is encrypted using expensive public key
encryption under the public key of the decryptor). Therefore, bulk
content encryption, re-encryption and eventual decryption would
all have to be performed using purely public key cryptography.

Even if the above were not an issue, there would remain a prob-
lem due to requests for various names not being uniformly dis-
tributed. One counter-measure is to encrypt each request using a
CPA-secure encryption scheme. Then, two requests for the same
content would carry different names that cannot be correlated. This
would, once again, negate the main benefit of caching. Thus, it ap-
pears that weak privacy – in the presence of Adv that has auxiliary
information – is only attainable if both requests and responses are
individually encrypted, making router caching useless, except for
re-transmissions.

7. PRIVACY IN PRACTICE
We now discuss application design patterns that can achieve lev-

els of privacy discussed above. However, since we can not view re-
quests and responses in isolation, we only focus on design patterns
for communication privacy. This is because most realistic eaves-
dropping adversary would be capable of observing bi-directional
traffic, i.e., both requests and responses.

7.1 Assumptions
As discussed earlier, a PRF or semantically secure encryption

scheme is needed for request privacy. Hence, the consumer must
have some information about the producer before issuing the re-
quest. Clearly, a request transformation function is only useful if
the producer can efficiently compute its inverse. Also, we assume
that the name transformation index, i.e., the minimal routable pre-
fix, is known to both consumer and producer.

7.2 Weak Privacy
Recall that weak privacy allows correlation and no identification

or leakage. This degree of privacy is unsuitable for highly sensi-
tive data exchanges, such as online banking or e-commerce trans-
actions. However, it might be suitable for less sensitive applica-
tions, e.g., content distribution networks (CDNs) which distribute
static content. Concrete examples include Netflix, Spotify, Imgur
and Flickr. Applications can use CDNs by asking for content with
the same name. As long as a name does not reveal any information
about the corresponding content, the CDN does not need to know
to what data it refers. A CDN node maps a request to a response
based on exact name match. We believe that this general model is
a good choice for weak communication privacy, wherein requests
are protected by a keyed PRF and responses – by an IND-secure
encryption scheme.

To support this type of privacy, there are two cases in terms of the
producer and consumer(s) relationship. In the first one, they share
a secret such as a previously established key. Let k be a unique key
derived (e.g., via a PRF) from this shared secret. We could then
instantiate q(·, ·) and r(·, ·) as an IND-secure encryption scheme
based on a PRP indexed by k.

Now suppose the producer and consumer have no pre-shared se-
crets. Then, before requesting content from a producer, a consumer
must know the former’s public key. In this case, q(·, ·) can be any
IND-secure (and thus CPA-secure) public key encryption function,
e.g., RSA. The response must be likewise protected using IND-
secure encryption. One way is to encrypt it using the consumer’s
public key, which the consumer would include in the request. Al-
ternatively, the consumer could pick a one-time symmetric key and

also include it in the original request. Of course, this does not pro-
vide forward security, which is another aspect to consider.

This is clearly an inefficient solution since it effectively removes
the utility of router caches, which is the primary reason one would
choose weak privacy. A better approach would be to encrypt the
content under a broadcast encryption scheme, e.g., [4]. Such schemes
are CCA-secure and therefore suitable for our setting since IND-
secure encryption follows from CCA-security. However, they only
work if the consumer already has the decryption keys, which vi-
olates our assumption that consumers and producers have no pre-
shared secrets. Therefore, it is unclear how to enable efficient weak
privacy with caching for public content, i.e., content that can be re-
quested by anyone without authentication or authorization.

7.3 Name Padding
Since IND-secure encryption is required for weak privacy, we

must also address the issue of name padding to make these trans-
formations uniform. Theorem 3 states that every encrypted name
in a given namespace must be of the same length. This is only
possible if all names are padded to some maximal length. The
current CCN packet format limits the total name length to 64KB
[18]. In practice, names are much smaller. To verify this, we ana-
lyzed names in the Unibas dataset from The Content Name Col-
lection [1], which contains unique URLs submitted by users to
URL shortner websites. We converted these URLs into a CCN-
compatible name format. For example, the URL http://www.
domain.com/file.html is converted into /com/domain/
file.html. Table 2 shows some characteristics of the Unibas
dataset. The standard deviation of the number of segments in a
name is 8.14 and the mean length per segment is 10.39B. Even
with these smaller sizes, performing padding universally across all
namespaces would result in significant overhead: the size of an
encrypted name would be about 800KB (based on the maximum
segment length, which is well beyond the maximum threshold for
CCN packets). For links with small(er) MTUs, e.g., in the range
[1, 500B, 9, 000B], the performance impact would be very heavy
since it would almost always induce fragmentation. Even with se-
cure fragmentation schemes such as those in [9] and [20], the over-
head would be non-negligible.

Fortunately, names are not distributed uniformly. Table 3 illus-
trates the name distribution per number of segments in each name.
It shows the number of names in the dataset that contain n segments
for n ∈ [1, 20]. Note that: (1) almost 30% of names have 5 seg-
ments, and (2) names of up to 20 segments account for 99.876% of
the dataset. Thus, maximum padding size is much smaller than the
maximum name size.

Furthermore, padding could be applied on a per-namespace ba-
sis. For example, in namespace /, the maximum padding length is
around 800KB. However, under the namespace /netflix/, the
maximum name length is likely much smaller. Since an application
has complete control over its namespace, it can specify a maximum
length for consumers to use in padding.

As a final note, this requires i∗ to be as long as the minimal
routable (un-encrypred) prefix needed to forward encrypted requests
to the producer. For example, suppose that all interests in the
/netflix/ namespace were routable. We would need to set
i∗ = 1, since anything beyond that would leak information about
the request. This highlights the relationship between namespace
ownership, routing, and privacy.

7.4 Strong Privacy
Strong privacy is suitable for applications for which security

is more important than caching. Examples include: banking, e-



Table 2: Unibas Dataset Characteristics

Names Name segments Segments per Name

Number of names 870′896′633
Total number of

segments 4′855′203′042
Total number of

segments 4′855′203′042

Average name
length (bytes) 57.95

Average segment
length (bytes) 10.39

Average segments
per name 5.57

Name length
standard deviation 77.60

Segment length
standard deviation 30.02

Segments per name
standard deviation 8.14

Minimum name
length (bytes) 1

Minimum segments
length (bytes) 1

Minimum segments
per name 1

Maximum name
length (bytes) 764′867

Maximum segments
length (bytes) 764′867

Maximum segments
per name 210′658

Table 3: Name Distribution per # of Segments

Number of
segments n Number of names Percentage

1 13′952 0.002%

2 141′904 0.016%

3 71′327′647 8.190%

4 187′307′048 21.507%

5 253′852′565 29.148%

6 144′130′578 16.550%

7 93′837′904 10.775%

8 70′875′144 8.138%

9 25′611′959 2.941%

10 10′464′092 1.202%

11 3′973′961 0.456%

12 4′546′842 0.522%

13 1′206′905 0.139%

14 835′124 0.096%

15 844′552 0.097%

16 195′491 0.022%

17 121′486 0.014%

18 317′628 0.036%

19 168′228 0.019%

20 50′742 0.006%

Total 869′823′752 99.876%

commerce, and voting. Fortunately, in such cases, there are fewer
design decisions, since both requests and responses require seman-
tic or CCA-secure encryption. This immediately implies the need
for a session-based protocol in which no request and response can
be correlated. There is only one such protocol for ICNs – CCNx
Key Exchange (CCNxKE) [25]. It is inspired by TLS 1.3 [22] –
the latest version of the Transport Layer Security protocol. Assum-
ing only knowledge of the minimal routable prefix for a given of
content, CCNxKE allows consumers and producers to create a se-
cure session with forward-secure keys to encrypt both requests and
responses using a CCA-secure encryption scheme. Clearly, strong
privacy destroys any benefits of shared caching for consumers. We
believe this is an important takeaway from our work.

8. RELATED WORK
Privacy in CCN and related architectures was initially addressed

in [5]. It briefly discusses the concepts of content and name privacy.
However, it does not consider these problems in any formal adver-
sarial model. Moreover, some of the solutions for name privacy
induce architectural changes. In this work, we assessed privacy in
the context of the standard CCN architecture.

Response privacy has received considerable attention in the re-
search community. Generally, responses are encrypted such that
only authorized consumers may decrypt the contents. This type of
technique permits content to be disseminated throughout the net-
work since it cannot be decrypted without the appropriate decryp-
tion key(s). Many variations of this approach have been proposed
based on general group-based encryption [23], broadcast encryp-
tion [15], attribute-based encryption [11], and proxy re-encryption
[26]. Kurihara et al. [14] generalized these specialized approaches
in a framework called CCN-AC, an encryption-based access con-
trol framework to implement, specify, and enforce access policies.
It uses CCN manifests7 to encode access control specification in-
formation for a particular set of content objects. Consumers use
information in the manifest to (1) request appropriate decryption
keys and (2) decrypt the content object(s) in question. The NDN
NBAC [27] scheme is similar to [14] in that it allows decryption
keys to be flexibly specified by a data owner. However, this is
done based on name convention rules instead of configuration. [27]
showed that this leads to better overall performance and scalability
when compared to CCN-AC. Unfortunately, all the aforementioned
techniques require at least one interest to fetch the content decryp-
tion key. Even if the primary content object request was weakly
private, the request for the decryption key is not since it must iden-
tify the key for the requesting consumer.

Interest-based access control [10] protects requests instead of re-
sponses. (However, it does not preclude responses being encrypted
as well.) The main idea is that the content name can only be de-
rived by authorized consumers. The proposed technique is only
weakly private since they were designed with cache utility in mind.
Specifically, two consumers in the same “access control group” is-
sue identical requests for the same protected content.

Privacy issues outside of the core request and response protocol
have been explored in the context of caches [2, 16, 17]. These re-
sults focus on determining whether two consumers requested the
same content by “probing” network caches for content based on
its name. Strong request privacy deters such attacks while weak
request privacy only minimizes their likelihood of success.

9. CONCLUSION AND FUTURE WORK
We presented a comprehensive assessment of data privacy in

CCN based on the constituent privacy properties of requests and
responses. We described the properties of requests and responses
necessary to achieve certain types of privacy in the presence of var-
ious adversaries. We show that strong cryptographic protection is
necessary for both requests and responses. As future work, we plan

7Manifests are special types of content that are used to provide
structure and additional information to otherwise flat and simple
content objects [19].



to examine application communication patterns to learn what is
leaked from side-channels. For example, protecting against tim-
ing and size side-channels might require even stronger protection
mechanisms beyond what is proposed in this paper.
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