
Network Names in Content-Centric Networking

Cesar Ghali∗ Gene Tsudik
∗

Christopher A. Wood
†

Computer Science Department, University of California Irvine
{cghali, gene.tsudik, woodc1}@uci.edu

ABSTRACT
Content-centric networking (CCN) is a networking paradigm
that emphasizes request-response-based data transfer. A
consumer issues a request explicitly referencing desired data
by name. A producer assigns a name to each data it pub-
lishes. Names are used both to identify data to and route
traffic between consumers and producers. The type, format,
and representation of names are fundamental to CCN. Cur-
rently, names are represented as human-readable application-
layer URIs. This has several important security and perfor-
mance implications for the network.

In this paper, we propose to transparently decouple application-
layer names from their network-layer counterparts. We demon-
strate a mapping between the two namespaces that can be
deterministically computed by consumers and producers, us-
ing application names formatted according to the standard
CCN URI scheme. Meanwhile, consumers and producers
can continue to use application-layer names. We detail the
computation and mapping function requirements and dis-
cuss their impact on consumers, producers, and routers. Fi-
nally, we comprehensively analyze several mapping functions
to show their functional equivalence to standard application
names and argue that they address several issues that stem
from propagating application names into the network.

CCS Concepts
•Networks → Naming and addressing; Cross-layer proto-
cols;

Keywords
content-centric networks; network name; name translation

1. INTRODUCTION
∗Supported by the NSF grant: “CNS-1040802: FIA: Collab-
orative Research: Named Data Networking (NDN)”.
†Supported by the NSF Graduate Research Fellowship
DGE-1321846.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN’16, September 26-28, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4467-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2984356.2984373

The Internet usage model has changed considerably over
the last two decades. Limitations of the current architecture
became more pronounced with the emergence of mobile- and
data-centric network services and applications. This pro-
found shift in usage led to the emergence of several major
efforts aiming to design a candidate next-generation Inter-
net architecture. Content-Centric Networking (CCN), an
instance of Information-Centric Networking (ICN) [1, 2], is
a recent network architecture that aims to overcome some
of these limitations. Unlike current IP-based networking
wherein hosts are directly addressed, CCN focuses on ad-
dressing data, called content, using explicit (and usually
human-readable) names. Consumers request desired con-
tent by issuing a so-called interest carrying the name of the
content. The network is in charge of finding and returning
the requested content.

Every interest contains a routable name, composed of one
or more variable-length components that are opaque to the
network [3]. For example, the name of the WSJ’s news
homepage content for March 9, 2016 might be: /ccn/usa/

wsj/news/03-09-2016/index.html. The application expres-
siveness of names eliminates the need for name resolution
services such as the Domain Name System (DNS) [4], though
it does not preclude name discovery by some external ser-
vice. A router uses names in conjunction with a Forwarding
Information Base (FIB)1 to forward interests towards the
nearest copy of the desired content. As in IP, the router
data plane is responsible for searching the FIB using longest-
prefix matching to identify the appropriate interfaces (if any)
on which an interest should be forwarded.

Although simple, this design has several undesirable con-
sequences. First, it places non-deterministic computational
burden on routers that must index the FIB to forward in-
coming interests. Modern high-speed FIB designs use data
structures that range from hash tables [5] to prefix tries [6,7].
All of them must account for variable length names and
name segments. Second, and perhaps more importantly,
the current design forces application layer semantics (i.e.,
names) down to the network layer.

In this paper, we propose and evaluate a way to transpar-
ently decouple applicationlayer and network-layer names in
CCN. Our approach produces network layer names that are
deterministically mapped to from application names, for-
matted according to the current and well-known CCN URI
scheme [3]. This yields several benefits: (1) less application

1The FIB is a data structure that maps name prefixes to
network interfaces.

data percolates into the network layer data plane, (2) pack-
ets carry less variable-sized names and name segments, and
(c) forwarding logic is simplified and therefore improved. We
discuss the impact of using network names on CCN entities
(consumers, producers, and routers) and related protocols,
such as routing. We also address security considerations
related to our network names. We then present a compre-
hensive analysis of their characteristics and statistical prop-
erties to show that they are functionally equivalent to stan-
dard CCN application names. Lastly, we conclude with a
discussion of related work and future directions.

2. CCN BACKGROUND
We now overview some key concepts and features of CCN.

Given familiarity with CCN, this entire section can be skipped
without loss of continuity.

2.1 CCN Architecture Overview
Named data (content) is the focal point of CCN. A content

name is composed of one or more variable-length segments
opaque to the network layer [1]. Segment boundaries are
explicitly delimited by “/” in the usual URI-like represen-
tation. For example, the name of a BBC’s news homepage
for May 9, 2016 might be: /ccn/uk/bbc/news/05-09-2016/
index.html.

Content is obtained via explicit requests, called interests.
A consumer issues an interest that specifies the requested
content name. An interest is routed – based on this name
– towards the nearest entity that has a copy of the refer-
enced content: either that content’s producer or a router
that cached it. Thus, names are treated first and foremost
as locators for content. Generally, an interest matches a con-
tent object if their names are equal. However, a name is not
guaranteed to map to a unique content. To this end, further
restrictions are possible to narrow the target of an interest.
One such restriction carried in an interest is the ContentO-

bjectHashRestriction field (also called content identifier),
which specifies the cryptographic hash digest of the content
object. An interest with a non-empty content identifier can
only match a content object if the hash of the latter equals
the content identifier. An interest might also reflect an-
other restrictive field: KeyIdRestriction, or key identifier.
If present, this value must match the eponymous field in the
content.

CCN routers maintain at least two elements to route in-
terest requests and content object responses:
• Forwarding Information Base (FIB): a table that maps

name prefixes to egress link identifiers. Ingress inter-
ests are forwarded to specific egress links by locating
the correct links in the FIB using longest-prefix-match
(LPM) of the name.
• Pending Interest Table (PIT): a high-speed cache-like

structure that stores names, content identifiers, ingress
link identifiers, and other miscellaneous information
for interests that have been previously forwarded. The
PIT can be seen as a data structure similar to a hash
table. The hash table key is the hash of a tuple con-
taining the interest name, KeyIdRestriction, and Con-

tentObjectHash Restriction. The hash table value
is the list of ingress link identifiers along with some
additional data (e.g., the hop count for the interest).

Upon receipt of an interest, a router will first examine its
PIT to see if a request for the same content has been pre-

viously forwarded. If so, the interest is aggregated by ap-
pending its ingress link identifier to the list in the matching
PIT entry. If not, the FIB is indexed (using LPM) to deter-
mine the next hop to which the interest should be forwarded.
When a content object is received, the PIT is examined to
find a matching entry. This is done by comparing (for equal-
ity) the content object name and identifiers with those con-
tained in the PIT. If there is no matching entry, the content
object is deemed unsolicited and dropped. Otherwise, the
content object is forwarded to all of the downstream links
contained in the matching PIT entry and the PIT entry is
subsequently flushed. The FIB is not examined when for-
warding content objects.

Routers may also be equipped with an optional content
store (CS), or cache. If present, content objects may be
stored in the CS after being forwarded downstream accord-
ing to the PIT. When a router with a CS receives an interest
the CS is examined for a locally cached copy of the requested
content object. The CS is searched using exact match on the
name and identifiers. If the content object is found in the
CS, then the router will reply with the data instead of for-
warding the interest further upstream.

2.2 CCN Name Semantics and Format
CCN requests are not limited to static content. For ex-

ample, the latest Facebook news feed page could be named
/ccn/facebook/newsfeed.html; this content could change
over time (and therefore be cached for very little time). Also,
in some cases, additional information such as user identities
can be added as special-purpose name segments or in in-
terest Payload fields to allow the producer to generate the
appropriate content. To avoid cache hits for interests re-
questing the same content but with different payloads, a
special name segment called the PayloadID is appended to
the end of the interest names. The value of this segment is
the cryptographic hash digest of the Payload field.

CCN uses a Type, Length and Value (TLV) [8] format to
encode all packet fields in interests and content objects [9].
All TLVs have a 2-byte type and 2-byte length field. This
places an upper bound of 64KB on the size of each TLV
field and the entire packet as a whole. The type namespace
is documented in [9]. For names, different types are used
to determine different name segment semantics. Some dis-
tinguished types are T_NAMESEGMENT, T_INTPAYLOADID, T_-
VERSION. (The name segment type space allocates room for
4096 distinct application-specific types.) For example, a
content named /ccn/wsj/news/T_INTPAYLOADID=0xA..B/T_
VERSION=0x02 can be represented using the following TLV-
encoded format (we use S-expressions in the following rep-
resentation):

T NAME

(T NAMESEGMENT 3 “ccn′′)

(T NAMESEGMENT 3 “wsj′′)

(T NAMESEGMENT 4 “news′′)

(T INTPAYLOADID 4 0x36F3AB30)

(T VERSION 1 0x02)

For the rest of the paper, we omit the length (i.e., the second
field) in the above TLV S-expression representation.

3. NETWORK NAMES
Let N = [N1, N2, . . . , Nk, S1, . . . , Sl] be a CCN applica-

tion name as per [3] where k segments N1, ..., Nk are used
for locating and identifying content and l segments S1, ..., Sl

carry application-specific information. We define segments
containing application data as any segment that is not of the
type T_NAMESEGMENT. This includes segments with the type:
T_PAYLOADID, T_VERSION, T_CHUNK, and any other application-
specific type to be defined. For example, the name /edu/

uci/ics/csdepart.html/T_VERSION=x02 can be represented
as the segment vector [edu, uci, ics, csdept.html, T VERSION

= 0x02] with k = 4 and l = 1, where the version segment is
the only piece of application data. As described previously,
an interest carrying this name would have the following TLV
encoding:

T NAME

(T NAMESEGMENT “edu′′)

(T NAMESEGMENT “uci′′)

(T NAMESEGMENT “ics′′)

(T NAMESEGMENT “csdept′′)

(T VERSION 0x02)

We propose the use of network names by modifying this
current format. In particular, each network segment of the
name is replaced by the fixed-size output of a mapping func-
tion T(·) computed over all prior segments in the name. In
other words, the i-th name segment is now a fixed-size map-
ping computed over the first i segments. We specifically omit
segments which are not part of the name locator, i.e., only
segments of type T_NAMESEGMENT are included in this com-
putation. The reasons for this requirement are discussed in
Section 4.1.2. The actual mapping is computed as:

N̄1 = T(N1), N̄2 = T(N1, N2), . . . , N̄k = T(N1, . . . , Nk)

Using this representation, the network name N̄ for a given
application name N is represented as N̄ = [N̄1, N̄2, . . . , N̄k,
S1, . . . , Sl]. The network name replaces the regular T_NAME

field in CCN packets – it is not carried in a per-hop header
or additional encapsulation layer. With a suitable T(·), the
relationship between N and N̄ forms a bijection between the
application and network namespaces so long as there are no
collisions in T(·).

We also need the network name to include an additional
name fingerprint segment Np, computed as the mapping of
the full name N with all additional identifiers, i.e., Np =
T(N ||KID||CID), where KID and CID are key and content
identifiers, respectively. As described in Section 4, Np is
used for PIT and CS lookup operations. As a consequence
of removing application names from packets, content digital
signatures must be generated and verified using Np. This
is discussed later in Section 6. Algorithm 1 shows the de-
terministic procedure for mapping an application name to a
network name with Np.

Following the CCN TLV-encoding in [9] and assuming T(·)
is SHA-256, the network name and fingerprint can be rep-
resented as:

T NAME

(T MAPPED SHA256 [N̄1, N̄2, N̄3, . . . , N̄i, . . . , N̄k])

(T TYPE S1)

. . .

(T TYPE Sl)

(T FINGERPRINT Np)

where T_TYPE is replaced with the appropriate type for the
corresponding segments.

Algorithm 1 Map

1: Input: N , T(·)
2: Output: N̄
3: N̄ = ∅
4: k :=Number of T_NAMESEGMENT segments in N
5: for i = 1 to k do
6: seq := N1|| . . . ||Ni

7: N̄ = N̄ ∪ T(seq)
8: end for
9: N̄ = N̄ ∪ [S1, . . . , Sl]
10: name := N1|| . . . ||Nl||S1|| . . . ||Sl

11: Np := T(name)
12: N̄ = N̄ ∪Np

13: return N̄

We use the type T_MAPPED_SHA256 to denote a list of name
segments transformed using SHA-256. We make the map-
ping function explicit to allow for agility. The length of the
TLV-encoded segment (not shown in the above representa-
tion) is the total byte length of all N̄ values. Given this
length and output size of T(·), the number of N̄ values can
be computed. In other words, using a fixed-size output T(·),
segments with type T_MAPPED_XXX are of fixed size. There-
fore, length and individual type of each N̄ value do not need
to be encoded.

3.1 T(·) Function Criteria
In the proposed naming scheme, T(·) is used for two pur-

poses:
1. Computing values in T_MAPPED_XXX segment of a net-

work name.
2. Computing the name fingerprint Np used by routers

for PIT and CS lookups and for signature generation
and verification.

Based on this, a sensible instantiation of T(·) is a hash func-
tion. This is because the FIB lookup actually computes
multiple hash values for all prefixes of a received interest
name, regardless of the underlying data structure used. Cur-
rently, most CCN routers use non-cryptographic hash func-
tions (i.e., those that are not collision-resistant) in the FIB
for LPM operations. Despite the non-negligible probability
of collisions in such hash functions, routers can resolve colli-
sions since application names are explicitly included in inter-
ests. However, in the proposed scheme, application names
are replaced with fixed-size segments computed using T(·).
Thus, if a collision occurs, a router cannot resolve it, which
might result in an interest being forwarded on the wrong
interface(s).

One way to cope is by carefully choosing names that do
not cause collisions in T(·). However, it is clearly infeasi-
ble for producers to be aware of all existing content names.
Another approach is to pick a cryptographic T(·) that offers
collision-resistance. In practice, a well-known cryptographic
hash function, e.g., SHA-256, can be used to provide this
property, in addition to other cryptographic characteristics,
such as one-wayness.

We also note that the output of the cryptographic hash
function can be truncated to any output size. We denote
T(·) truncated to s most-significant bits as Ts(·). With
Ts(·), the corresponding network name segments will carry
a type of the form T_MAPPED_XXX_S where S is digest size,
e.g., T_MAPPED_XXX_64. Note that output truncation should
only be used when computing network name segments and
not for generating Np in order to provide the least collision
probability for PIT and cache lookups. In Section 5, we

Table 1: Impact on CCN Entities

Entity Impact
Consumer Increased online processing to compute network

names (interests)
Producer Increased storage for reverse mapping (interests)

Increased off-line processing to compute network
names (content)

Router Faster FIB lookup with pre-computed name pre-
fix hashes (interests)
Faster PIT and cache lookups (interests)
Faster PIT lookups due to lack of name hashing
(content)
Decreased storage requirement due to fixed-size
Np, instead of arbitrarily long names (content)

Table 2: Impact on CCN Packets

Packet Impact
Interest Longer name TLV encoding; based on T(·) size,

see Section 5
Content Shorter (fixed-size) Np, instead of complete ap-

plication name

analyze collision probabilities for Ts(·) for different s values.
In the rest of the paper, we use the terms mapping function

and hash function interchangeably when referring to T(·).

4. NETWORK NAMES IN PRACTICE
The proposed naming scheme has obvious implications for

network entities as well as management and control func-
tions, such as routing. In this section, we investigate the
impact on end-hosts (consumers and producers), network
entities (routers and forwarders), and management functions
(routing protocols). This is summarized in Table 1. Impli-
cations for CCN packets are summarized in Table 2. All of
these are considered in detail in Section 5.

4.1 Name Translation at End-Hosts
End-hosts are the primary entities affected by the pro-

posed naming scheme since they are tasked with translating
between application and network names. In practice, this
mapping would be performed by a code component between
the application and network layers.2

4.1.1 Consumer Mappings
The impact on consumers is one name mapping per inter-

est. However, since this operation is not on the fast-path,
we expect no performance penalty for consumers. To justify
this claim, we assessed the overhead for translating all names
in the Cisco URI dataset [10] with the (unoptimized) PARC
CCNx libraries [11]. This dataset consists of 13′549′122
unique URIs. The average length of each URI is 57.4B,
with a median length of 52B, and a standard deviation of
33.182B. Across all URIs, the average number of segments
is 6.67 with a median length of 6, and standard deviation of
2.212 segments. The average, minimum, and maximum time
to compute the mapped version of each name is 1′029.279us,
3.812us, and 2′474.567us, respectively. These numbers were

2Inverting this process is effortless at since the same stack
component that is responsible for mapping N into N̄ would
remember this relationship and perform the inverse mapping
when the content object response returns. The amount of
state required for this procedure is directly proportional to
the amount of pending interests at a consumer.

generated on a desktop machine with an Intel 2.8 GHz Core
i7 processor.3 This is just over one millisecond to map a sin-
gle name, which is still less than most network I/O overhead.
Given the average size taken across all URIs, the average,
minimum, and maximum cycles/byte throughput for this
mapping is 1′577.688c/b, 1′218.037c/b, and 3′494.538c/b,
respectively. This is far from optimal given that the mod-
ern Intel Haswell chipsets can compute SHA-256 digests at a
throughput of roughly 8.59c/b [12]. Therefore, we conclude
that, given a proper modern implementation, the mapping
process at the consumer incurs negligible overhead.

4.1.2 Producer Inversions
Network names have two implications for producers: (1)

handling, and responding to, incoming interests and (2) gen-
erating content. Since our goal is to make network names
transparent to applications, the producer must be able to de-
termine the original application name from a network name
contained in an incoming interest.4 Therefore, the producer
must maintain the reverse mapping from network to appli-
cation name prefixes that it published.5

For this to work, we assume that the producer knows
all content prefixes under which it publishes content. In
other words, the network locator portion of the namespace
for which a particular producer is responsible must be well-
defined. Furthermore, most producers would need to main-
tain an index that maps application names to content ob-
jects in order to respond to interests. The cost of the network-
to-application name mapping would, in the worst case, dou-
ble the size of this index. Since the size of hash table key-sets
in data repositories is typically negligible (compared to size
of the actual data), this should not result in any significant
barrier.

Assuming the producer maintains this reverse mapping,
suppose it receives an interest for N̄ that has k mapped
segments, l application segments, name fingerprint Np and
optional payload. Using the inverse mapping, it can invert
the first k segments, and thus recover the original full name
used by the interest-issuing consumer’s application. This
process does not distinguish between interests for static and
dynamic content, since a name for either type of content
must have a prefix corresponding to at least k leading seg-
ments, i.e., the network locator portion of the name. In case
of interests for dynamic content, the “dynamic” portion of
the name is the suffix that has at most l segments. Recall
that this portion of the name is not mapped, i.e., it remains
“human-readable” as in standard CCN names.

One drawback of imposing this reverse mapping is that
T(·) must be fixed and adopted by all consumers and pro-
ducers. This limits the scalability of the proposed naming
scheme and does not facilitate seamless evolution, or replace-
ment, of T(·). One obvious way of relaxing this requirement
is to support multiple T(·) functions. To do so, producers
should be able to map any received network name format to
the requested content. This would require a separate index

3The code is available at https://github.com/chris-wood/
network-names.
4If the network name can be used to index into a reposi-
tory for statically generated content, then inversion is not
necessary.
5Note that the producer can not compute the inverse based
only on network prefixes if T(·) if a cryptographic hash func-
tion, as we propose.

Figure 1: CCN interest forwarding using hash tables [5].

for each supported T(·).
As far as the second implication for producers, recall that,

when forwarding a content object, its name is used only
for exact matching, i.e., there is no LPM as with inter-
ests. This means that the producer can replace the full net-
work name with just Np. This appreciably reduces router
overhead and fixes the overall name size in the content ob-
ject header. This is very beneficial when the size of a con-
tent’s name exceeds that of the payload, which might be
the case for small contents produced by IoT sensors [13] or
NACKs [14].

4.2 Forwarding Implications
Figure 1 shows the computations needed to forward an

interest per standard CCN in a forwarder that processes
application names with a hash-based FIB. For an n-segment
name, a forwarder must compute at most n hashes. The
complete name hash is used to index the CS, PIT, and FIB,
while the remaining (n − 1) hashes are used to index only
the FIB.

Clearly, FIB lookup is the most expensive operation as it
requires the most hashes. The LPM algorithm is typically
implemented using Bloom filters (BFs) in hardware-based
forwarders. This is because the n independent hash func-
tions and lookups can be done in parallel. However, in soft-
ware, BFs are not appropriate since the BF index operation
is necessarily sequential. To the best of our knowledge, [5] is
one of the most efficient software-based techniques for FIB
lookup based on hash tables. Specifically, to lookup a name
prefix with k segments, the technique in [5] performs a single
hash (for each segment), one modular reduction (based on
the number of hash table buckets), and a memory lookup.
The penalty of reading memory not in the data cache is over
100 memory stall cycles.6 For example, the cost of comput-
ing a 64-bit hash with SIPHASH [5] is 5.94 cycles/byte. In
this case, the cost of hashing a name exceeds that of the pe-
nalized lookup if the name being hashed exceeds 16 bytes.
Thus, for names longer than 16 bytes, hash function compu-
tation accounts for at least half the cycles needed for hash
table lookup.

This is where the motivation for the proposed network
naming scheme becomes most apparent: our proposal re-
moves hashing overhead from: (1) FIB hash table lookup
and (2) complete name hash (for CS and PIT lookups). In
the former case, this reduces the fast-path overhead by at

6If the memory location is in the cache, there is no stall
penalty.

least the cost of the mapping function (depending on the
name length). In the latter case, PIT and CS lookups are
simplified for reasons discussed above. Since both PIT and
CS are effectively indexed by Np, this is the only information
required to read and write to these data structures. Also,
since Np is always included in interest and content packets,
this computation is removed from the fast path.

As with producers, routers would have to support a range
of T(·)-s by accommodating different T(·) output sizes. This
can be done by (1) re-hashing network names when indexing
any of these tables, or (2) maintaining a separate index for
each supported size. In case (1), we claim that the router
overhead is still reduced since the input to these re-hash
functions is always a fixed size, not exceeding 32 bytes; ap-
plication names may very well exceed this size and therefore
take more time to hash. In case (2), although table man-
agement and maintenance might become more complicated,
there will be no need for re-hashing. As part of future work,
we plan to implement the software-based lookup in [5] using
network names and analyze its performance.

4.3 Routing Protocols
Our proposal does not require any changes to CCN routing

protocols. Producers announce application name prefixes
for namespaces they control. Routers then hash received
prefixes to populate FIB tables, as described in Section 2.
To guarantee correct interest forwarding, the function used
by routers to fill FIBs and T(·) used by consumers when
generating network names must be the same. This is the
same requirement for the producer-generated reverse map-
pings mentioned in Section 4.1.2. Similarly, multiple T(·)
functions can be supported by routers. This would require
routers to have multiple FIB entries per prefix – one for each
supported hash function. Clearly, this represents a trade-
off between scalability and mapping agility, versus increased
FIB table sizes.

5. EXPERIMENTAL ANALYSIS
In this section, we compare our proposal to the standard

CCN naming scheme, aiming to show that network names
are functionally equivalent to application names, (in terms
of uniqueness, size, and distribution properties) and enable
correct forwarding with improved performance. We use the
Unibas dataset from the The Content Name Collection [10],
which contains unique URLs submitted by users to URL
shortner websites. We convert these URLs into a CCN-
compatible name format. For example, the URL http:

//www.domain.com/file.html is converted into the CCN
name /com/domain/file.html. Table 3 shows some char-
acteristics of the Unibas dataset.7

Table 4 illustrates name distribution per number of seg-
ments in each name. It shows the number of names in the
dataset that contain n segments for n ∈ [1, 20]. Note that:
(1) almost 30% of names have 5 segments, and (2) names
of up to 20 segments account for 99.876% of the Unibas
dataset. Also, we use application names that only contain
locator segments, (i.e., with no identifier segments) because
such identifiers are not easily distinguished from locator seg-
ments outside the application layer, and they are included in
network names exactly as they appear in application ones.

7For practical reasons, we truncate names beyond the max-
imum size of 2, 000 bytes and 80 segments [15].

Table 3: Unibas Dataset Characteristics

Names Name segments Segments per Name

Number of
names

870′896′633
Total number of

segments
4′855′203′042

Total number of
segments

4′855′203′042

Average name
length (bytes)

57.95
Average

segment length
(bytes)

10.39
Average

segments per
name

5.57

Name length
standard
deviation

77.60
Segment length

standard
deviation

30.02
Segments per

name standard
deviation

8.14

Minimum name
length (bytes)

1
Minimum

segments length
(bytes)

1
Minimum

segments per
name

1

Maximum name
length (bytes)

764′867
Maximum

segments length
(bytes)

764′867
Maximum

segments per
name

210′658

(a) Unibas average name length and standard deviation for various

T(·) sizes.

(b) Average name length increment for various T(·) sizes.

Figure 2: Network overhead differences between network and application names.

5.1 Encoding Overhead
An advantage of fixed-size mapping to generate network

names is that all hash values in the T_MAPPED_XXX segment
have the same size. However, a name can still have an arbi-
trary number of segments, since there is no such restriction.
Depending on the mapping function and whether its out-
put is truncated, network names might be longer or shorter
than their application counterparts. Also, T_MAPPED_XXX

segments an carry extra 4 bytes: 2 for the type and another 2
for the length. Therefore, the total length of a T_MAPPED_XXX

segment is (k ∗ s) + 4, where k is the number of name seg-
ments involved in T(·)’s computation and s is the truncated
size of T(·). Whereas, the total length of a standard CCN

TLV-encoded name can be computed as
∑k

i=1(|N [i]|+ 4).
Figure 2(a) demonstrates the Unibas dataset average name

length (in bytes) and the standard deviation for various
truncated output sizes of T(·). (TLV represents applica-
tion names encoded in TLV format.) Figure 2(b) shows the
average name length increment (or decrement) for various
truncated output sizes of T(·), as compared to the TLV-
encoded application names. We note that for T16(·), pro-
posed network names offer size of reduction of 40%. For
T32(·), network names result in only 2% additional length
over application ones. However, for T160(·), network name

sizes increase by a factor of 2.5.
One advantage of network names in content objects is

their fixed size. Similar to the discussion above, Np might
be larger or smaller than the original application name, de-
pending on T(·) output size. We explore encoding overhead
of name fingerprints in content headers under three T(·) out-
put bit-sizes: 256, 384, and 512. We assess network overhead
in two ways:
• Average overhead: overhead of using the fingerprint

as compared to each name in the Unibas dataset. Re-
sults are presented as the average of all the individual
overhead values.
• Overhead compared to the average name: overhead as

compared to the average length of all names in the
Unibas dataset.

Figure 3 shows results of using these methods for computing
network overhead for the name fingerprint. It demonstrates
that giving more weight to individual names yields higher
overhead as compared to the average name length. There is
a size increase for all T(·)s since names in the dataset are
generally shorter than 256-512 bits. However, since the con-
tent namespace has substantial room to grow, this overhead
will likely decrease as application names grow and diversify.

Table 4: Name Distribution per # of Segments

Number of
segments n

Number of names Percentage

1 13′952 0.002%

2 141′904 0.016%

3 71′327′647 8.190%

4 187′307′048 21.507%

5 253′852′565 29.148%

6 144′130′578 16.550%

7 93′837′904 10.775%

8 70′875′144 8.138%

9 25′611′959 2.941%

10 10′464′092 1.202%

11 3′973′961 0.456%

12 4′546′842 0.522%

13 1′206′905 0.139%

14 835′124 0.096%

15 844′552 0.097%

16 195′491 0.022%

17 121′486 0.014%

18 317′628 0.036%

19 168′228 0.019%

20 50′742 0.006%

Total 869′823′752 99.876%

5.2 Collision Resistance
As mentioned in Section 3.1, T(·) must at least be a collision-

resistant mapping function and its output can be truncated
for practical purposes. However, truncation might affect
collision-resistance. To this end, we now look at the col-
lision probabilities in network names for various truncated
sizes of Ts(·), based on prefix length of names in the Unibas
dataset. Specifically, we compute the collision probability
for at least two unique application name prefixes of n seg-
ments (n ∈ [1, 20]). Table 5 shows the name distribution per
number of prefix segments. Over 40% of the names have a
unique prefix of 5 segments.

We evaluate the collision probabilities experimentally as
well as analytically. To address the latter, we use the Bino-
mial distribution with parameters m and p as in Equation
1.

f(d) =
(m
d

)
p
d
(1− p

d
)
m−d

(1)

f(d) is the probability of a unique name prefix mapped
using Ts(·) occurring at least d times among network name
prefixes of length n ∈ [1, 20], m is the size of this set, and
p is the probability of a single element of that set to occur.
Assuming Ts(·) is based on a cryptographic hash function,
its truncated output is guaranteed to be pseudo-random.
Therefore, p = 1/2s.

The probability of collision that we are trying to determine
is f(d) for d ≥ 2. This is because a collision occurs whenever
two or more prefixes map to the same value in the set of
mapped name prefixes of length n. We denote this by f(2+),
computed using Equation 2.

f(2
+

) = 1− f(0)− f(1) = 1−
(

1−
1

2s

)m

−
m

2s

(
1−

1

2s

)m−1

=

1−
(

1−
1

2s

)m
[

1 +
m

2s

(
1

1− 1
2s

)]
=

1−
(

1−
1

2s

)m [
1 +

m

2s − 1

]
(2)

Figure 3: Average network overhead of name fingerprints

in content headers with various T(·)-s.

Table 6 shows f(2+) using the given values of m in 5 (second
column) and different truncated output sizes [16, 32, 48, 64,
128, 160]. We compared these values of the collision proba-
bility with those computed by mapping and truncating all
the names in the Unibas dataset with prefixes of length
n ∈ [1, 20]. From this comparison we observe the follow-
ing:
• Collision probability for T16(·) is 1 because the number

of names with prefix n ∈ [2, 20] is over 216, which is
the output space size of T16(·).
• Experimental collision probability for T64(·), T128(·),

and T160(·) and some n values of T48(·) is 0. This is
because the number of names with prefixes n in Table
5 is small compared to the output space size of the pre-
vious mapping functions. Therefore, an experimental
collision cannot occur.
• Collision probability for T32(·) is nearly equal to the

distribution in Table 5. Specifically, it reaches its max-
imum for n = 5, which is the most common prefix
length among the names in the Unibas dataset. Fig-
ure 4 depicts this comparison.

6. SECURITY CONSIDERATIONS
From a security perspective, network names prompt sev-

eral issues. Perhaps the most important is related to con-
tent signatures. Traditionally, signatures include the (ap-
plication) name and payload of a content object. However,
since packets no longer carry application names, the question
of how one might verify content signatures in the network
arises. Notice, however, that the name fingerprint Np is in-
cluded in interests and content objects. Cryptographically,
there is no difference between hashing over the application
name and payload vs hashing over the name fingerprint and
payload. Thus, if signatures are generated using Np instead
of the application name, then routers can still perform in-
network verification.

Second, since network names are computed with (possibly
truncated) obfuscation functions, name prefix collision in a
FIB would cause an interest to be forwarded on an incorrect
interface. We believe that this is not an issue in practice
because a FIB is populated by a routing protocol. Thus,

Table 5: Prefix Distribution per # of Prefix Segments

Number of
prefix

segments n

Number of unique
prefixes m

Percentage

1 185′769 0.021%

2 10′159′460 1.167%

3 138′848′082 15.943%

4 305′236′992 35.049%

5 356′952′045 40.987%

6 225′092′000 25.846%

7 162′898′537 18.705%

8 98′471′166 11.307%

9 40′003′541 4.593%

10 19′165′574 2.201%

11 10′485′282 1.204%

12 7′597′933 0.872%

13 3′514′400 0.404%

14 2′540′599 0.292%

15 1′952′318 0.224%

16 1′193′997 0.138%

17 1′066′544 0.122%

18 1′044′263 0.120%

19 771′267 0.089%

20 646′401 0.074%

the routing protocol (which is exposed to application names)
can explicitly prevent colliding names from being inserted
into the FIB. Moreover, with cryptographic hashes, collision
probability is negligible, as supported by experiments and
analysis.

The third issue is that an adversary might provide fake
network names that would cause interests to be forwarded
towards a given router or producer as a form of denial-of-
service (DoS). For example, if an adversary knows that a
network name with the first component equals hash digest
x, then it can generate and issue fake interests with that
prefix even if it does not know the corresponding applica-
tion name component. However, this is no different from
currently possible interest flooding attacks [16–18]. There-
fore, any solution to standard CCN interest flooding attacks
would also prevent this type of DoS.

A more relevant and harmful DoS attack in the current
CCN architecture is where an adversary generates inter-
ests for names that collide in the (hash-table-based) PIT
and induce expensive collision-resolution steps [5]. This at-
tack is not applicable with network names, since Np is pre-
computed using a collision-resistant hash function. That is,
if an adversary sends multiple interests with the same net-
work name, then the probability that they correspond to
different application names is negligibly small.

7. RELATED WORK
There is a significant body of research centered on the de-

sign and implementation of high-speed forwarders for CCN
and related architectures [5, 19–21] that use different mech-
anisms to handle the current CCN naming scheme. For
example, Quan et al. [20] propose a highly efficient name
lookup engine for CCN forwarders that exploits the vari-
ability in names. Specifically, Tree-Bitmaps [22] and Bloom
Filters (BFs) [23] are used in unison and in parallel to look
up a name using LPM. The proposed parallel lookup algo-

Figure 4: Collision probability for T32(·) in both experimen-

tal and analytical cases.

rithm involves computing BF hashes on one half of the name
and then performing exact match in a Tree-Bitmap on the
other half. The naming scheme we propose does not change
this behavior in any way; it merely makes all inputs a uni-
form and predictable size. So et al. [5, 24] also proposed
an efficient forwarding engine that uses a hash-based data
structure for name LPM. The design uses SipHash for its
low cycles/byte throughput and collision properties. The
network naming scheme we propose would also benefit from
the solution in [5,24] since the hashing step in the hash table
lookup can either be skipped outright or, at the very least,
the hash function input is reduced to a fixed size.

Perino et al. [25] propose an alternative LPM implemen-
tation that does not use successive lookups as in [5]. [25]
decomposes the LPM problem into two subproblems: (1)
finding the longest length of a matching prefix using a BF
and (2) a hash table lookup. High-quality pre-computed
hashes improve the efficacy of the latter approach while neg-
ligible effect on the former. (Other BF-based LPM solutions
include [26] (and [27, 28] for IP networks).) The work of
Fukushima et al. [21] also uses BFs composed with a hash
table lookup to reduce the search space and size of the hash
table. (This solution is an enhancement to [25].) Again, the
proposed naming scheme in this paper would not negatively
affect the BF lookup, though it may certainly help improve
the hash table index operation.

Song et al. [29] propose a novel FIB design that uses name
compression and Patricia tries [30] to reduce the footprint of
FIBs. The naming scheme we propose would make this par-
ticular solution worse since cryptographic hash digests have
a high amount of entropy and cannot be compressed. Wang
et al. [31] proposes a LPM implementation which relies on
a specific sorted order of names in the FIB data structure.
As with the previous work, the encoding scheme we use re-
moves the order property from names and therefore renders
this technique ineffective. Conversely, the earlier name com-
ponent encoding solution of Wang et al. [32] would work
equally well with our network naming scheme since it relies
on exact-match names.

Yuan et al. [33] studied the performance of existing for-
warding engines to determine the pain points for forward-

Table 6: Probability of Collision Results - ‘Exp.’ represents collision probabilities obtained from experiments and ‘Ana.’

represents the same probabilities computed analytically using Equation 2. Highlighted numbers indicates anomalies between

experiments and analytical results.

n
T16(·) T32(·) T48(·) T64(·) T128(·) T160(·)

Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana.

1 0.77 0.77 9.31E-10 9.35E-10 0 2.18E-19 0 5.07E-29 0 1.49E-67 0 8.08E-87

2 1 1 2.80E-6 2.79E-6 0 6.51E-16 0 1.52E-25 0 4.46E-64 0 2.42E-83

3 1 1 5.12E-4 5.12E-4 1.21E-13 1.22E-13 0 2.83E-23 0 8.32E-62 0 4.61E-81

4 1 1 2.41E-3 2.41E-3 7.14E-13 5.88E-13 0 1.37E-22 0 4.02E-61 0 2.18E-80

5 1 1 3.27E-3 3.27E-3 7.57E-13 8.04E-13 0 1.87E-22 0 5.50E-61 0 2.98E-80

6 1 1 1.33E-3 1.32E-3 2.52E-13 3.20E-13 0 7.44E-23 0 2.19E-61 0 1.19E-80

7 1 1 7.01E-4 7.01E-4 1.63E-13 1.67E-13 0 3.90E-23 0 1.15E-61 0 6.21E-81

8 1 1 2.59E-4 2.59E-4 7.82E-14 6.12E-14 0 1.42E-23 0 4.19E-62 0 2.27E-81

9 1 1 4.31E-5 4.31E-5 7.11E-15 1.01E-14 0 2.35E-24 0 6.91E-63 0 3.75E-82

10 1 1 9.93E-6 9.93E-6 0 2.32E-15 0 5.40E-25 0 1.59E-63 0 8.60E-83

11 1 1 2.96E-6 2.98E-6 0 6.94E-16 0 1.62E-25 0 4.75E-64 0 2.57E-83

12 1 1 1.57E-6 1.56E-6 0 3.64E-16 0 8.48E-26 0 2.49E-64 0 1.35E-83

13 1 1 3.34E-7 3.35E-7 0 7.79E-17 0 1.81E-26 0 5.33E-65 0 2.89E-84

14 1 1 1.75E-7 1.75E-7 0 4.07E-17 0 9.48E-27 0 2.79E-65 0 1.51E-84

15 1 1 1.05E-7 1.03E-7 0 2.41E-17 0 5.60E-27 0 1.65E-65 0 8.92E-85

16 1 1 3.73E-8 3.86E-8 0 9.00E-18 0 2.09E-27 0 6.16E-66 0 3.34E-85

17 1 1 3.21E-8 3.08E-8 0 7.18E-18 0 1.67E-27 0 4.91E-66 0 2.66E-85

18 1 1 3.05E-8 2.96E-8 0 6.88E-18 0 1.60E-27 0 4.71E-66 0 2.55E-85

19 1 1 1.70E-8 1.61E-8 0 3.75E-18 0 8.74E-28 0 2.57E-66 0 1.39E-85

20 1 1 1.07E-8 1.13E-8 0 2.64E-18 0 6.14E-28 0 1.80E-66 0 9.78E-86

ing based on CCN names at line rate. [33] concluded that
the primary problems were (1) exact string matching with
fast updates, (2) longest prefix matching for variable-length
and unbounded names, and (3) large-scale flow maintenance.
The naming scheme we propose solves problems (2) and,
with the application of previously discussed techniques, may
transitively help solve (1). Problem (3) remains the same
when dealing with both standard CCN names and the pro-
posed network names.

With respect to content locator and identifier separation,
Adrichem et al. [34] propose an alternative naming mecha-
nism for CCN that maps context-related application names
to location-aggregated network names. The goal is to allow
content to be published in a location-agnostic manner. Not
only does this solution require the use of the DNS to per-
form this mapping, it also breaks the location-independent
nature of CCN names. It may also expand the length of
network names depending on the amount of location infor-
mation returned from the mapping.

Ali et al. [35] examine the requirements for application
naming schemes in CCN but do not discuss how it can be
efficiently conveyed in the network layer.

8. CONCLUSION
This paper presented a means to transparently decou-

ple application and network namespaces in CCN. The pro-
posed approach is based on a deterministic mapping from
application names to network names. This approach yields
some important benefits, including: removal of application-
specific names from the router’s fast path, fixed-size name
components in packets, and pre-generated name hashes for
routers to use in FIB, PIT, and cache lookups. We dis-

cussed implications of the proposed naming scheme on con-
sumers, producers and routers and also addressed some rel-
evant security concerns. Finally, our analysis shows there
is little functional difference between standard application-
layer names and proposed network-layer names.

For future work we plan to implement the naming scheme
in CCN-compliant stacks and (open source) high-speed for-
warders to obtain quantitative measurements of its over-
head. This might include different FIB data structures that
exploit the fixed-length nature of network names, such as
string or character tries. We also intend to further explore
entropy differences between application- and network-layer
namespaces.

9. REFERENCES
[1] M. Mosko et al., “CCNx semantics,” IRTF Draft, Palo

Alto Research Center, Inc, 2016.

[2] B. Ahlgren et al., “A survey of information-centric
networking,” Communications Magazine, 2012.

[3] marc.mosko@parc.com and C. Wood, “The CCNx URI
Scheme,” Internet Engineering Task Force,
Internet-Draft draft-mosko-icnrg-ccnxurischeme-01,
Apr. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/
draft-mosko-icnrg-ccnxurischeme-01

[4] P. Mockapetris, “RFC 1035: Domain names -
implementation and specification,” 1987.

[5] W. So et al., “Named data networking on a router:
fast and dos-resistant forwarding with hash tables,” in
ANCS, 2013.

[6] R. De La Briandais, “File searching using variable
length keys,” in Western joint computer conference,

1959.

[7] P. Brass, Advanced data structures. Cambridge
University Press Cambridge, 2008.

[8] T. Przygienda, “RFC 3359: Reserved type, length and
value (TLV) codepoints in intermediate system to
intermediate system,” 2002.

[9] I. Solis, marc.mosko@parc.com, and C. Wood, “CCNx
Messages in TLV Format,” Internet Engineering Task
Force, Internet-Draft draft-irtf-icnrg-ccnxmessages-03,
Jun. 2016, work in Progress. [Online]. Available: https:
//tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-03

[10] “The content name collection,”
http://www.icn-names.net/, accessed: April 8, 2016.

[11] “CCNx distillery,”
https://github.com/parc/CCNx Distillery, accessed:
May 14, 2016.

[12] S. Gulley and V. Gopal, “Haswell cryptographic
performance,” Intel Corporation, 2013.

[13] J. Burke et al., “Secure sensing over named data
networking,” in NCA, 2014.

[14] A. Compagno et al., “To NACK or not to NACK?
negative acknowledgments in information-centric
networking,” in ICCCN, 2015.

[15] “WWW FAQs: What is the maximum length of a
URL?”
https://boutell.com/newfaq/misc/urllength.html,
accessed: April 8, 2016.

[16] A. Afanasyev et al., “Interest flooding attack and
countermeasures in named data networking,” in IFIP
Networking, 2013.

[17] A. Compagno et al., “Poseidon: Mitigating interest
flooding DDoS attacks in named data networking,” in
LCN, 2013.

[18] M. Wählisch et al., “Backscatter from the data
plane–threats to stability and security in
information-centric network infrastructure,” Computer
Networks, 2013.

[19] C. Yi et al., “A case for stateful forwarding plane,”
Computer Communications, 2013.

[20] W. Quan et al., “TB2F: Tree-bitmap and bloom-filter

for a scalable and efficient name lookup in
content-centric networking,” in IFIP Networking, 2014.

[21] M. Fukushima et al., “Efficiently looking up
non-aggregatable name prefixes by reducing prefix
seeking,” in INFOCOM WKSHPS, 2013.

[22] W. Eatherton et al., “Tree bitmap: hardware/software
IP lookups with incremental updates,” ACM CCR,
2004.

[23] B. H. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” ACM Communications, 1970.

[24] W. So et al., “Named data networking on a router:
forwarding at 20gbps and beyond,” in ACM CCR,
2013.

[25] D. Perino et al., “Caesar: a content router for
high-speed forwarding on content names,” in ANCS,
2014.

[26] Y. Wang et al., “Namefilter: Achieving fast name
lookup with low memory cost via applying two-stage
bloom filters,” in INFOCOM, 2013.

[27] S. Dharmapurikar et al., “Longest prefix matching
using bloom filters,” in SIGCOMM, 2003.

[28] H. Song et al., “IPv6 lookups using distributed and
load balanced bloom filters for 100gbps core router
line cards,” in INFOCOM, 2009.

[29] T. Song et al., “Scalable name-based packet
forwarding: From millions to billions,” in ICN, 2015.

[30] W. Szpankowski, “Patricia tries again revisited,”
JACM, 1990.

[31] Y. Wang et al., “Greedy name lookup for named data
networking,” in ACM SIGMETRICS, 2013.

[32] ——, “Scalable name lookup in NDN using effective
name component encoding,” in ICDCS, 2012.

[33] H. Yuan et al., “Scalable NDN forwarding: Concepts,
issues and principles,” in ICCCN, 2012.

[34] N. L. Van Adrichem and F. A. Kuipers, “Globally
accessible names in named data networking,” in
INFOCOM WKSHPS, 2013.

[35] A. Ghodsi et al., “Naming in content-oriented
architectures,” in ACM SIGCOMM workshop on
Information-centric networking. ACM, 2011.

