
Cache Privacy in Named-Data Networking

Gergely Acs∗,#, Mauro Conti†,#,+, Paolo Gasti‡,#, Cesar Ghali§, Gene Tsudik§
∗INRIA

†University of Padua
‡New York Institute of Technology
§University of California, Irvine

Abstract—Content-Centric Networking (CCN) is an alter-
native to host-centric networking exemplified by today’s In-
ternet. CCN emphasizes content distribution by making con-
tent directly addressable. Named-Data Networking (NDN) is
an example of CCN being considered as a candidate next-
generation Internet architecture. One key NDN feature is
router-side content caching that optimizes bandwidth consump-
tion, reduces congestion and provides fast fetching for popular
content. Unfortunately, the same feature is also detrimental
to privacy of both consumers and producers of content. As
we show in this paper, simple and difficult-to-detect timing
attacks can exploit NDN routers as “oracles” and allow
the adversary to learn whether a nearby consumer recently
requested certain content. Similarly, probing attacks that target
adjacent content producers can be used to discover whether
certain content has been recently fetched. After analyzing the
scope and feasibility of such attacks, we propose and evaluate
some efficient countermeasures that offer quantifiable privacy
guarantees while retaining key features of NDN.

I. INTRODUCTION

Today’s Internet has become a de facto public utility, with
a large percentage of the world’s population relying on it
for numerous activities. However, despite its unparalleled
success and popularity, current Internet’s IP-based architec-
ture is rapidly aging. Anticipating the need for the next-
generation Internet architecture, a number of research efforts
have sprung up in recent years [23].

One key motivator for a new Internet architecture is the
fundamental shift in the nature of traffic: from mainly low-
bandwidth interactive (e.g., remote log-in) and store-and-
forward (e.g., email) nature of the early Internet to web-
dominated Internet of today. At the same time, massive
and ever-increasing amounts of content are being constantly
produced and consumed (distributed) over the Internet. This
transpires over social networks such as Facebook, media-
sharing sites such as YouTube and productivity services
such as GoogleDocs. Consequently, the basics of Internet
communication shifted from a telephony-like conversation
between two IP interfaces to a consumer who wants content

#Work performed in part while at UC Irvine.
+Mauro Conti was supported by Marie Curie Fellowship PCIG11-GA-

2012-321980, funded by the European Commission for the PRISM-CODE
project, and by the University of Padua Researchers’ Mobility grant 2012.
This work has been partially supported by the TENACE PRIN Project
20103P34XC funded by the Italian MIUR.

The work of Paolo Gasti, Cesar Ghali and Gene Tsudik was supported
by the NSF under project CNS-1040802 – ”FIA: Collaborative Research:
Named Data Networking (NDN)”.

and wants it fast, regardless of where it comes from. This
motivates reconsidering Internet architecture.

Content-Centric Networking [7] (CCN) is a recent
paradigm for content distribution in large networks. Unlike
today’s largely host-centric networking (e.g., the Internet),
CCN is based on directly addressing content. A consumer
requests content by name (i.e., expresses interests in the
content) and the network takes care of finding and returning.
The CCN approach moves hosts into the background, while
named content becomes a first-class object.

One example of CCN is Named-Data Networking (NDN)
– a current research effort considered as a candidate next-
generation Internet architecture. NDN is also one of several
NSF-funded research projects under the Future Internet Ar-
chitectures (FIA) program. As part of FIA, NSF emphasizes
“security and privacy by design”. In today’s Internet, secu-
rity and privacy problems were (and are still being) identified
along the way and patches are retrofitted; some haphazardly.
In contrast, the NSF FIA program stresses early awareness
as well as support for features and counter-measures, from
the outset. To this end, security and privacy issues in all
FIA projects, including NDN, are being investigated, e.g.,
[9], [27].

One important NDN feature is router-side content caching.
Its goal is to reduce congestion while improving throughput
and latency for popular content. In contrast with IP, NDN
routers can often satisfy interests using previously forwarded
content objects. Consequently, content might be fetched
from an NDN router’s cache rather than from its original
producer.

Motivation. Despite its clear benefits, content caching in
NDN also raises a major privacy issue that we summarize
below and then discuss, in more detail, in Section III.

Suppose the adversary (denoted by Adv) wants to deter-
mine whether a consumer (Alice) recently requested certain
content C. If Adv and Alice share a first-hop NDN router R
(e.g., they are neighbors who are served by the same ISP),
Adv measures round-trip time (RTT) Adv ↔ R. Next, it
requests C and measures the corresponding RTT. Comparing
the two RTTs is sufficient to determine whether C was
retrieved from R’s cache.1 Similarly, suppose that Adv wants
to learn whether a content producer (Bob) has been recently
asked for, and distributed, content C. Assuming that Adv and

1Clearly, there might be other users, besides Alice and Adv. However,
this would not change the nature of the attack.

Bob are separated by at least one NDN router, Adv measures
or estimates Adv ↔ Bob RTT and then requests C. If the
latter RTT is lower than the former, Adv concludes that C
was fetched from some NDN router cache and, therefore,
at least one consumer recently requested it. Furthermore,
a combination of these two attacks can be used to learn
whether two parties (Alice and Bob) have been recently, or
still are, involved in a two-way interactive communication,
e.g., voice or SSH.

These attacks do not require Adv to have any special
privileges: the interaction between Adv and NDN routers
is normal. It might appear that the Adv can learn the
same information by simply eavesdropping on Alice or
Bob. However, eavesdropping requires real-time presence
by Adv who must also be physically near the victim (e.g.,
the same ethernet segment, wired or wireless). Whereas,
aforementioned attacks require neither real-time presence
nor proximity.

Roadmap. In this paper, we explore privacy issues in
NDN router-side content caching. We argue that access to
router caches allows users to obtain information about their
neighbors’ incoming and outgoing content traffic. Next, we
show, via experiments with current NDN public-domain
prototype, that these privacy threats are realistic. We then
propose several simple countermeasures that, predictably,
offer tradeoffs between privacy and cost. We also introduce
a formal framework for privacy evaluation of shared router
caches and evaluate proposed countermeasures within this
framework.

Organization. Section II overviews NDN. We show how to
implement and perform privacy attacks in Section III, also
supporting our claims with experiments run on the current
NDN testbed [21]. Then, adversary and privacy models are
described in Section IV. Next, Section V discusses pro-
posed countermeasures. Experimental evaluation and real-
world impact of these countermeasures are presented in
Section VII. Finally, Section VIII reviews related work and
the paper concludes with some items for future work in
Section IX.

II. NDN OVERVIEW

NDN ([20], [15]) is a network architecture based on
named content. Rather than addressing content by location,
NDN refers to it by human-readable names. A content name
is composed of one or more variable-length components
that are opaque to the network. Component boundaries
are explicitly delimited by “/” in the usual representa-
tion. For example, the name of a CNN news content for
May 20, 2013 might look like: /cnn/news/2013may20.
Large pieces of content must be split into frag-
ments: fragment 137 of Alice’s YouTube video could
be named: /youtube/alice/video-749.avi/137.
Since NDN’s main abstraction is content, it is not possible
to directly address “nodes” (hosts, routers), albeit, their
existence is assumed.

NDN communication adheres to the pull model: content
is delivered to consumers only upon explicit request. A

consumer requests content by sending an interest. If an entity
(a router or a host) can “satisfy” a given interest, it returns
the corresponding content. A content named X is never
forwarded or routed unless it is preceded by an interest for
name X .2 Interest and content are the only types of packets
in NDN.

Each NDN node (router or host) maintains the following
three components [6]:
• Content Store (CS) – cache used for content caching

and retrieval. (From here on, we use the terms CS and
cache interchangeably).

• Forwarding Interest Base (FIB) – routing table of name
prefixes and corresponding outgoing interfaces (to route
interests).

• Pending Interest Table (PIT) – table of currently not-
yet-satisfied (pending) interests and a set of correspond-
ing incoming interfaces.

When a router receives an interest for name X, and there
are no pending interests for a matching name in its PIT, it
forwards the interest to the next hop(s), according to its FIB.
For each forwarded interest, a router stores some amount of
state information, including the name in the interest and the
interface on which it arrived. However, if an interest for X
arrives while there is already an entry for the same content
name in the PIT, the router collapses the present interest
(and any subsequent ones for X) storing only the interface
on which it was received. When content is returned, the
router forwards it out on all interfaces on which an interest
for X has arrived and flushes the corresponding PIT entry.
Since no additional information is needed to deliver content,
an interest does not carry a “source address”.

Each NDN router provides content caching and its cache
size is determined by local resource availability. Routers
unilaterally determine what content to cache.

At the first glance, NDN seems inherently safe against
cache privacy attacks: if multiple consumers share the same
NDN router’s cache, Adv cannot determine exactly which or
how many requested particular content, as long as the content
does not expose consumer-identifying information. Thus,
consumers seem to benefit from some form of k-anonymity.
However, for many types of traffic (e.g., email, instant
messaging, voice) consumer’s identity can be determined by
examining the content and/or its name. Furthermore, since
all content objects in NDN are signed, content producer
can be easily identified by its signature. Finally, even k-
anonymity may be insufficient if Adv simply wants to deter-
mine whether any consumer requested a particular content.
We also note that content encryption offers limited benefits.
Encryption conceals the “payload” of content objects. How-
ever, NDN names cannot be encrypted, since doing so would
prevent content objects from being routed.3 In general, since
Adv aims to determine whether certain named content has

2Strictly speaking, content named X′ 6= X is a match – and therefore
can be sent in response to – an interest for X if and only if X is a prefix
of X′, e.g., /cnn/news/2013may20 matches /cnn/news/.

3Onion routing over NDN [9] has been investigated. It allows parties to
encrypt content names. However, it incurs a heavy performance burden.

been sent and/or received, encryption is basically ineffective.
Based the above discussion, there is an inherent conflict

in NDN between utility of router-side caching and privacy
for both producers and consumers of content. The resulting
privacy problem and potential countermeasures are the sub-
ject of this paper. We believe it is imperative to address (or
at least mitigate) them before NDN can be deployed on a
large scale.

III. CACHE PRIVACY ATTACKS

We now describe, in more detail, cache privacy attacks
mentioned in Section I. NDN topology for our sample setup
is shown in Figure 1. It includes the following entities: (1)
user U ; (2) NDN router R; (3) content producer P ; and (4)
adversary Adv. P is reachable by U and Adv only through
R. We also assume that only U and Adv are served by R
as their fist-hop NDN router, though we will later relax this
assumption.

Router (R)

Honest
User (U)

Adversary (A)

NDN Network

Producer (P)

Figure 1. Local network topology

In this topology, Adv can learn whether specific content
C was recently requested by U by probing R’s cache. To
do so, Adv issues an interest for C and measures delay d1
needed to retrieve it. It then picks another (existing) content
C′ and requests it twice in succession. The first time, C′
might be fetched from its original producer or from some
router’s (possibly, R’s) cache. However, the second time, C′
is certainly fetched from R’s cache. Let d2 denote the delay
for the latter. If d1 ≈ d2, Adv concludes that U recently
requested C. Whereas, if d1 > d2, Adv decides that C has
not been recently requested by anyone from this side of R.4

To validate the above scenario, we conducted some ex-
periments. First, P published 1,000 content objects. Next,
U , which is directly connected to R via Fast Ethernet,
requested all published content objects. This caused all
content to be cached by R. Then, from Adv we requested
the same contents which were promptly fetched from R’s
cache. We repeated this experiment 50 times (every time
starting with an empty cache for R), and measured average
delays for retrieving content from P and R. Our results are
in Figure 3(a) show the probability distribution function for
the delays. Accordingly, Adv can determine, with probability
over 99.9% whether C is retrieved from R’s cache.

We then conducted similar measurements in a WAN
topology over the NDN testbed [21], where U and Adv

4Note that d1 < d2 is not possible, since we assumed that R is the
first-hop NDN router for both U and Adv.

are connected to the same first-hop NDN router R, which
is several hops away from both, while P is 3 hops away
from R. Figure 3(b) shows the results. Clearly, presence of
additional hops increases delay and introduces some vari-
ance in measurements. Nonetheless, we can still determine
– with probability over 99% – whether C is retrieved from
R’s cache.

In our third experiment (again in the NDN testbed setting),
P is directly connected to R, while U and Adv are three
hops away. Adv’s goal was to determine whether C produced
by P was requested recently. To do so, Adv fetches C twice
and measures the delay each time. Results in Figure 3(c)
show that Adv can distinguish whether C is served from
R with over 59% probability by probing a single content
object.

As mentioned in Section II, large NDN content is split into
several (small) content objects. Adv can exploit the correla-
tion between such content objects to improve the accuracy of
its guesses in our third experiment. In fact, Adv only needs
to determine whether one content object has been retrieved.
Let success denote the event of the adversary successfully
determining whether a single content object is fetched from
the cache, and fail failure to do so. (Hence, Pr[success] =
1 − Pr[fail]). Since fail and success are independent for
content objects, the overall probability of failure (FAIL)
can be expressed as Pr[FAIL] = (Pr[fail])n. Analogously,
Pr[success] = 1 − (Pr[fail])n. In our experiment we have
Pr[success] = 0.59. (Pr[fail] = 0.41). If a content is split
into eight content objects, Pr[success] = 1−0.418 ≈ 0.999.

In probing router caches, Adv can also take advantage of
the scope field in NDN interests by setting it to “2”. This
value means that the interest can traverse at most two NDN
entities, source included. This way, if Adv receives C for an
interest with scope = 2, then (regardless of the delay) C
must be in R’s cache. However, NDN routers are allowed
to disregard this field without significantly affecting NDN
functionality.

Malicious Application

Honest Applications

CCNd

Producer (P)

NDN Network

Figure 2. Local network topology

Local Adversary. Attacks described thus far, using the
topology in Figure 1, are also applicable to the local cache
of a specific NDN node. An NDN node (e.g., a laptop or
an Android smartphone [5]) might run multiple applica-
tions that have access to the network and produce/consume
content. NDN specifications [15], [6] require each NDN
node to maintain a local cache. A malicious application, can
abuse this cache by employing the same probing techniques

3.3 4.3 5.3 6.3 7.3 8.3 10.312.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time [msec]

P
D

F

Cache hit

Cache miss

(a) LAN

4.5 5.5 6.5 7.5 9.5 12.6 15.8 22.1
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

P
D

F

Cache hit

Cache miss

(b) WAN

180 190 200 210 220
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

PD
F

Cache hit
Cache miss

(c) WAN, producer privacy

0.4 0.6 0.9 2 3 4 5 7.1 12.1
0

0.05

0.1

0.15

0.2

0.25

Time [msec]

P
D

F

Cache hit

Cache miss

(d) Local Host

Figure 3. Timing Attack Results

described above. Figure 2 illustrates the corresponding topol-
ogy.

Figure 3(d) summarizes our results in the local-host
setting. The difference between cache hits and cache misses
is even more evident than in previous experiments, i.e.,
Adveasily learns information about cached content of other
applications.

IV. SYSTEM, ADVERSARY AND PRIVACY MODEL

In this section we introduce our system, privacy and
adversary models.

System Model. Let NM and CN denote the universes of
all names and content, respectively. As before, let R be an
NDN router. Internal state of R is represented by a function
S : CN→ N that, for a given content, represents the number
of times it has been forwarded.
S(C) = 0 for all C that is not in R’s cache. We assume

that C can appear in R’s cache only if it has been previously
forwarded by R.

A cache management algorithm CM has access to R’s
internal state and determines what content forwarded by R
needs to be cached. CM also controls how R responds to
interests that correspond to cached content. Without loss of
generality, we assume that users have access to content only

through R, i.e., R is their only choice as a first-hop NDN
router. We make no assumptions about how CM responds
to interests that match content in its cache, e.g., CM is free
to ignore its cache altogether for some incoming interests.
Finally, we assume that CM can hide cache hits (e.g., by
simply not using its cache) but cannot hide cache misses.

By interacting with R, users are allowed to determine,
with some probability, whether a specific content has been
forwarded by R (i.e., probing attacks). We model this by a
probabilistic algorithm QS : NM → {0, 1} with access to
the router’s internal state S. QS outputs 1 if some cached
content C matches input name. Otherwise, QS outputs 0.
After each invocation of QS , S transitions to S′ such that
S′(C) = S(C)+1 and, for all other C′ 6= C, S′(C′) = S(C′).

Adversary Model. The goal of Adv is to learn information
about content forwarded (and likely still cached) by R. Since
caching algorithm CM is not secret, Adv can use QS to
learn private information. In particular, Adv can test whether
content C was recently forwarded by querying QS(C).

In our model, Adv can be any NDN entity that requests
and receives content. Adv is not allowed to compromise
any honest (intended victim) users. Also, Adv does not
eavesdrop on communication between R and honest users.
(This can be supported by using an encrypted channel

between each user and its closest NDN router). Moreover,
Adv cannot compromise R.

Privacy Model. We now turn to privacy definitions. We
take advantage of the concept of (ε, δ)-probabilistic indis-
tinguishability [13], [19] – a standard notion to measure
indistinguishability of two distributions in privacy-oriented
applications.

Definition IV.1 ((ε, δ)-probabilistic indistinguishability).
Two distributions D1 and D2 are (ε, δ)-probabilistically
indistinguishable, if we can divide the output space Ω =
Range(D1) ∪ Range(D2) into Ω1 and Ω2 such that:

• for all O ∈ Ω1, e−ε ≤ Pr(D1=O)
Pr(D2=O) ≤ e

ε

• Pr(D1 ∈ Ω2) + Pr(D2 ∈ Ω2) ≤ δ.

Two distributions are “close” if both ε and δ are small.
This definition is stronger than the widely used statistical
indistinguishability since it requires similar probabilities for
each output in Ω1. The set Ω2 contains all “bad” outputs
with probabilities in D1 and D2 that differ substantially;
their ratios can not be bounded by eε (or e−ε). Intuitively, if
D1 and D2 represent output distributions of CM with two
different states, then (ε, δ) measures the information that
CM leaks about the states. Any output from Ω2 typically
leak “too much” information: e.g., occurrence of any O ∈
Ω2 such that Pr(QS1

(`) = O) > 0 and Pr(QS2
(`) = O) =

0, for the same name ` (S1 6= S2), may result in privacy
breach in practice, as S1 and S2 become distinguishable
through CM in that case.

We now define perfect privacy with respect to forwarded
content. Informally, CM provides perfect privacy if the way
it responds to QS queries does not yield any information
about the content of the router’s cache.

Definition IV.2 (Perfect privacy). For all names ` ∈ NM,
subset of content M ⊂ CN, and pairs of states S0, S1

such that S0(x) = S1(x) for all x ∈ CN \ M and
S0(y) 6= S1(y) for all y ∈ M , QS0

(`) and QS1
(`) are

(0, 0)-probabilistically indistinguishable.

The above definition is quite strong since it implies that, if
CM offers perfect privacy, it does not reveal any information
about any content previously forwarded by R. We believe
that this level of privacy may not be necessary in practice.
For this reason, we use the concept of content popularity
to relax the above definition: there is no need to conceal
the presence of popular content (e.g., Google’s home page)
from routers’ caches, since Adv can safely assume that this
content is in caches without probing them. Let k be the
number of requests above which a content is considered
popular. We allow the distributions of outputs of Q under
two states S0 and S1 to be non-indistinguishable, with some
probability which depends on k.

Definition IV.3 ((k, ε, δ)-privacy). For all data names ` ∈
NM, subset of content M ⊂ CN, and pairs of states S0, S1

such that S0(x) = S1(x) for all x ∈ CN \M as well as
S0(y) = 0 and 0 < S1(y) ≤ k for all y ∈ M (i.e., S0

and S1 only differ on M); QS0
(`) and QS1

(`) are (ε, δ)-
probabilistically indistinguishable.

V. COUNTERMEASURES

One trivial and effective countermeasure to all aforemen-
tioned attacks is to simply disable router caching altogether.
However, this would immediately negate efficient content
distribution, which is one of the key benefits of NDN.

Clearly, not all content is private. To avoid the overhead of
concealing non-private content, consumers and/or producers
need the means to specify which content is sensitive. There
are several ways to do so, depending on who decides on
content’s sensitivity. We outline some examples (the list is
not exhaustive):

• Producer-driven: a reserved name component, e.g.,
“/private/”. If it is present as (for example) the last
component of a name, the eponymous cached content
is treated as private by the router caching algorithm.
Alternatively, a special privacy bit – also set by the
producer – in the content header could achieve the same
effect. A consumer issues interests as usual, possibly
remaining oblivious to content being private.

• Consumer-driven: a special privacy bit in interests,
set by the consumer. The corresponding content, when
cached by the router is marked accordingly and is
treated as private. The producer may or may not pay
any heed to the privacy bit, partly depending on whether
the interest propagates all the way to the producer.

• Mutual: content is referred to by an unpredictable
name. In other words, if content is private, both con-
sumer and producer refer to it by a name that contains
a unique and hard-to-guess component, ideally derived
from some shared secret. One attractive feature of this
approach is its opaqueness – routers need not be aware
of its existence.

These three approaches are not mutually exclusive, e.g., even
if C is not marked (or named) as private by its producer, it
can be requested as private by a consumer.

The above alternatives only correspond to the means of
marking private content. However, they do not imply or in-
clude any actions by NDN entities (particularly, routers) that
need to be taken upon encountering such private content. To
this end, in the rest of this section we introduce techniques
that inhibit Adv from extracting meaningful information
about forwarded private traffic from routers’ caches.

In designing countermeasures, we consider two types of
network traffic: interactive and content distribution. The first
represents synchronous communication between two or few
parties, e.g., VoIP and remote shell. This type of traffic
is characterized by the requirement for low-latency and
continuos interaction. In other words, communicating parties
continuously play the roles of both producer and consumer.
Whereas, multimedia data delivery, live broadcasts and de-
livery of web pages are examples of content distribution
traffic. Our rationale for distinguishing among these two
traffic types in terms of countermeasures is discussed below.

A. Interactive Traffic

While NDN router caching mostly benefits content distri-
bution, it also helps mitigate effects of packet loss in interac-
tive communication [17]. This is because interests re-issued
for lost packets can be usually satisfied by content cached
closest to the location of actual loss, thereby reducing the
delay for re-requested content. For this reason, any privacy-
enhancing caching mechanism for this class of traffic should
not introduce any additional delay.

At the same time, since interactive content tends to be very
time-sensitive, there are hardly any benefits from caching it
in routers in the longer term. Specifically, if several users
take part in a video-conference, cached stale video frames
are of no use to any of them.

We choose to protect this class of traffic using unpre-
dictable names, i.e., the mutual approach introduced above.
Producers and consumers use a random quantity rand as
the last component of the name of each content they create
and request, respectively. This requires some coordination
between the two (or more) parties involved in the interaction.
Regardless of the details, the parties need to agree on a
shared secret for seeding a pseudo-random function (e.g., a
keyed cryptographic hash, such as HMAC) used to generate
content-name-specific rand.

We take advantage of our previous assumption that Adv
can not eavesdrop on content consumers/producers involved
in interactive communication or on traffic over R’s incident
links (e.g., due to link encryption or lack of physical access).
Unpredictable content names inhibit malicious probing of
R’s cache.5 At the same time, in the event of packet loss, U
can re-issue an interest and still benefit from obtaining re-
quested content from the NDN router closest to the location
of packet loss.

As mentioned earlier, this mutual approach to mark-
ing private traffic can be combined with producer- and/or
consumer-driven approaches. However, that would require
router participation.

B. Content Distribution Traffic

Unlike interactive traffic, content distribution does not
require any coordination between producers and consumers.
Also, comparatively, it benefits a lot more from longer-term
router caching. (Consider, for example a YouTube video
going viral). Consequently, an ideal privacy approach for
content distribution traffic would retain at least some benefits
of caching, beyond simple packet loss recovery.

In this setting, neither the number nor identities (or
locations) of possible consumers of given content is known
in advance. The same goes for timings of their content
requests. Thus, the previously described method of using
unpredictable content names – which seems well-suited
for interactive traffic – is not viable for content distribu-
tion. More generally, all mutual techniques are essentially

5Routers must not return content that include rand as a name com-
ponent to interests that do not explicitly express it. For example, content
named /alice/skype/0/rand should not be returned to interests for
/alice/skype/ even thought it would be a longest-prefix match.

ruled out, leaving us with producer- and/or consumer-driven
means of marking private traffic. In order to maximize
flexibility, we allow both: a producer can mark any of its
content as private and a consumer can request any content
as private, regardless of how it is marked by the producer.

Based on our discussion thus far, it appears that router
involvement in handling private traffic is unavoidable for
content distribution. Since low latency is not usually a
primary requirement for content distribution traffic, NDN
routers can hide cache hits by introducing artificial delays
before responding with privacy-sensitive cached content.
This strategy retains one important benefit of router caching,
i.e., reducing congestion and conserving bandwidth. In other
words, bandwidth utilization of NDN remains intact, since
this approach does not increase the overall amount of traffic
forwarded by any router, as compared to the current NDN
architecture. Moreover, if the overall delay introduced by
routers is close to the RTT between U and P , the behavior
of the network from the U ’s prospective becomes analogous
to the current IP-based Internet.

We now need to consider which routers should introduce
artificial delays. If all NDN routers independently do so,
overall delay for consumers requesting content would likely
become unbearable. We believe that a sensible approach is
to involve only consumer-facing routers, i.e., those that are
most likely to be probed by Adv.6

Now, suppose that we introduce constant delay γ, i.e.,
in case of a cache hit, each consumer-facing R waits for
γ milliseconds before returning private-marked content. In
case of a cache miss, the artificial delay at R must be the
difference between γ and the actual delay for R to receive
requested content. Note that, in the latter case, the overall
interest-in→content-out delay would still be γ.

This approach is easy to implement and requires a small
amount of per-cache-entry state. However, it has a major
drawback in that it either penalizes nearby content or sac-
rifices privacy for far-away content. The former happens if
γ is set too high and content with nearby (with respect to
R) producers winds up being unduly delayed. Whereas, the
latter occurs when requested content is far away (or routed
via slow and/or congested links) and the actual delay at R
exceeds γ.

It is unclear how to determine the optimal value of γ
that would avoid both problems. We therefore consider two
alternatives to constant artificial delay:
• Content-specific delay: For each privacy-sensitive con-

tent C, R stores the original interest-in→content-out
delay γC . (In other words, time it took R to obtain C,
from either its producer or some other router’s cache,
the first time.) If an interest for it arrives while C is in
R’s cache, R delays replying for γC msecs.

• Dynamic delay: A router can dynamically adjust ar-
tificial delay to mimic current behavior of in-network
caching for popular content: as the number of interests
for a given content grows, so does the likelihood

6This point deserves further consideration; we defer it to future work.

of it being cached at a nearby router. According to
Definition IV.2, the artificial delay must not drop below
the actual delay for content located two hops from Adv.

The former is obviously the safer choice for privacy. Albeit,
it imposes considerable delays for content that was originally
fetched from far-away producers or routers. Whereas, dy-
namic delay is clearly more responsive to ephemeral traffic
patterns, in return for requiring routers to constantly monitor
delay and popularity for all content.

Finally, we consider how a router should handle all
possible combinations of consumer- and producer-driven
content marking. If C is marked as private by its producer,
this setting must be always honored by all consumer-facing
routers, even if a consumer requests it without setting the
privacy bit in the interest.

Different rules apply to content that is not marked as
private by its producer. This type of content is problematic
since we can not ensure it being consistently requested as
private (or non-private) by all consumers.

Once an interest for non-privately-produced C′ is marked
as non-private, C′ must be treated as non-private as long
as it remains in R’s cache. The rationale for this is as
follows: suppose that once C′ has been requested as private,
all subsequent requests are delayed. Adv requests C′ twice
without privacy. If C′ has been requested before with privacy,
both requests from Adv will be delayed. On the other hand,
if C′ has never been requested before, Adv will experience
a cache miss and a cache hit. This clearly allows Adv to
determine when C′ has been requested by U with privacy.

It is easy to see that, letting the first non-private interest
act as a trigger (after which interests for corresponding
content are not delayed), probing R for C′ does not yield
any useful information.

Allowing consumers to set a privacy flag in interests might
encourage selfishness: if cached content has been marked
as non-private before, they will receive it with no delay.
If it has not, they will keep their requests private. The
general outcome would be detrimental for all consumers,
who would experience high latency even when the requested
content is in cache. However, we argue that consumers
have at least one incentive for requesting content without
privacy: reduced delay for re-transmitted interests in case of
packet loss.7 Requesting content with privacy precludes its
re-transmission from router caches (if the original content
object is lost) and hence results in higher delays. For this
reason, we believe that the rational choice for consumers is
to request content with privacy only when actually needed.

So far we have considered only techniques where cache
hits for private content are always delayed. It is easy to
see that, therefore, the approaches listed above are secure
according to Definition IV.2, i.e., perfectly private. This is
a very security strong notion, and in practice it may not be
required. We argue that there are factors – such as content
popularity – that allow us to avoid hiding cache hits for
private content without significantly compromising privacy.

7Packet loss rate in today’s Internet hovers around 4% [3], [2].

Incidentally, the overall benefits of caches are more evident
with popular content. In the next section, we discuss and
analyze more sophisticated techniques that take advantage
of this observation to offer cache privacy while lowering
delay.

VI. IMPROVED PRIVACY-UTILITY TRADE-OFF

Although approaches presented in the previous section
provide perfect privacy in the sense of Definition IV.2, they
can result in large number of cache misses and long delays
experienced by consumers. We now consider more practical
techniques that relax the perfect privacy requirement in favor
of better performance, i.e., higher utility. In general, such
techniques randomly decide whether to mimic a cache hit
or a cache miss for each content request. The distribution
of observed output reflects the (local) popularity of the
requested content.

A Non-Private Naı̈ve Approach. Let cC denote the number
of requests for a particular content C. The algorithm always
generates a cache miss, iff cC ≤ k, where k denotes the size
of the anonymity set. Therefore, a cache hit indicates that
at least k requests have been generated for C.

This approach is not private, since Adv can determine
whether C was previously requested. To do so, Adv issues
requests for C, until it determines (knowing k) that the
content is coming from R’s cache. Let c′C be the number
of such requests. If c′C > 0, Adv learns that exactly k − c′C
requests have been issued for C.

Random-Cache. Security of the previous scheme depends
on Adv’s knowledge of k. Our next scheme – Random-
Cache – selects a random k for each content. Thus, the index
of the first cache hit in the output sequence is expected to be
random, and should not leak information about the router’s
cache.

As shown in Algorithm 1, the scheme works as follows:
the router maintains a counter cC for each C. The first request
for C always is a cache miss, and cC is initialized to 0.
Also, kC is picked from [0,K) according to a distribution
on domain [0,K), described by a random variable K. Upon
receipt of a new request for C, the router increments cC and
checks whether cC ≤ kC . If so, it generates a cache miss
and a cache hit otherwise.

We define utility as the ratio of expected number of cache
hits and the total number of requests for a given content, i.e.,
it represents the fraction of interests satisfied from the cache.

Definition VI.1 (Utility). Let H(c) denote the random
variable describing the distribution of the number of cache
hits depending on the total number of requests c (c ≥ 1).
The utility function u : N → R+ of a cache management
scheme is defined as: u(c) = 1

cE(H(c)).

In practice, we derive u using the average number of cache
misses, instead of cache hits, which is easier to compute. Let
M(c) denote the random variable describing the distribution
of the number of cache misses, based on the total number
of requests c (c ≥ 1). Then, M(c) +H(c) = c, and u(c) =
1− 1

cE(M(c)).

Algorithm 1: Random-Caching
1: Input: Content C, Domain size K, Distribution of K
2: Output: Cache hit or cache miss
3: T := set of received content
4: if C /∈ T then
5: Select kC from [0,K) with probability Pr(K = kC)
6: T := T ∪ {C}
7: cC := 0
8: Output cache miss
9: else

10: cC := cC + 1
11: if cC ≤ kC then
12: Output cache miss
13: else
14: Output cache hit

Specifically, for Random-Cache, we have:

E(M(c)) =


∑c
i=1 i · Pr(K = i− 1) +

∑K
i=c+1 c · Pr(K = i− 1),

if 1 ≤ c < K

E(K), otherwise.
(1)

The distribution K influences both privacy and utility:
If cache misses occur with overwhelming probability, we
obtain (almost) perfect privacy with nearly no utility. If K
is uniform, we obtain the best privacy among all distributions
in terms of ε (which is 0). In addition, as shown below, we
can decrease δ (and improve privacy) by increasing K at
the cost of degrading utility. We refer to this instantiation of
Random-Cache as Uniform-Random-Cache.

Uniform-Random-Cache Let U(0,K) denote the discrete
uniform random variable, i.e., Pr(U(0,K) = r) = 1/K,
0 ≤ r < K. Uniform-Random-Cache is an instantiation of
Random-Cache (Algorithm 1) with K = U(0,K).

Theorem VI.1 (Privacy). If all cached content is statistically
independent, Uniform-Random-Cache is (k, 0, 2kK)-private.

Proof: (Sketch) Slightly abusing the notation, let
Q0(C, r) and Q1(C, r) denote the output of Algorithm 1
in states S0 and S1, respectively, with C when kC = r.
(Recall that S0(C) = 0 and S1(C) = x, where 1 ≤ x ≤ k).
In addition, Qt0(C, r) and Qt1(C, r) denote the sequence of
outputs obtained by executing Algorithm 1 with C consecu-
tively t times, in states S0 and S1, respectively.8 Let Qt0 and
Qt1 denote two random variables describing Qt0(C, r) and
Qt1(C, r) when r is selected uniformly at random according
to Line 5 of Algorithm 1.

We show that, for all content C, Qt0 and Qt1 are (0, 2xK)-
prob. indistinguishable. This implies that Uniform-Random-
Cache is also (0, 2xK)-prob. indistinguishable with any C, if
all content is statistically independent.

The output of Qt0 and Qt1 is a sequence with length
t consisting of two sub-sequences; the prefix which is

8Since all content is statistically independent, since: (1) it does not matter
whether S0 and S1 differ in more than one content’s count, and (2) Adv’s
best strategy is to request the same content multiple times in order to infer
information about router state.

composed of consecutive cache misses (i.e., sequence of 0’s)
and the suffix with consecutive cache hits (i.e., a sequence
of 1’s).

We partition output space Ω = Range(Qt0)∪Range(Qt1)
into Ω1, Ω2 and Ω3, for all t and C, as follows:
• Ω1 = Range(Qt1) \ Range(Qt0): If r ∈ [0, x), then

all the t replies are cache hits in state S1. However,
this output can not appear with S0 where the very first
answer is always a cache miss (the router first needs
to retrieve the content). Thus, @r′ such that Qt1(C, r) =
Qt0(C, r′).

• Ω2 = Range(Qt0) ∩ Range(Qt1): If r ∈ [x,K − x),
then Qt1(C, r) = Qt0(C, r − x).

• Ω3 = Range(Qt0) \ Range(Qt1): If r ∈ [K − x,K),
then the output with S0 contains at least K − x + 1
cache misses, which is not possible with S1. Hence,
@r′ such that Qt0(C, r) = Qt1(C, r′).

For output O ∈ Ω, let prefix (O) denote prefix length of O
(i.e., # cache misses in O). Since kC is selected uniformly
at random, for all O ∈ Ω2, Pr(Qt0 = O) = Pr(kC =
prefix (O)− 1) = Pr(kC = prefix (O) + x− 1) = Pr(Qt1 =
O). Hence, ε = 0. Moreover, if O ∈ Ω1 ∪ Ω3, Pr(Qt0 =
O) + Pr(Qt1 = O) = 1

K . Since |Ω1 ∪ Ω3| = 2x, we obtain
δ = Pr(Qt0 ∈ Ω1 ∪ Ω3) + Pr(Qt1 ∈ Ω1 ∪ Ω3) = 2x

K ≤
2k
K .

This theorem claims that the probability that Adv can
determine whether a content has been requested zero or
k times is 2k/K. This is because observing any outcome
(hit/miss) which can occur in state S0, but not in S1, (or
vice-versa) occurs with probability 2x/K. The analysis also
shows that perfect privacy cannot be achieved if a cache hit
can be generated, with non-zero probability.

Theorem VI.2 (Utility). For Uniform-Random-Cache,
u(c) = 1− 1

cE(M(c)), where

E(M(c)) =

{
c
(
1− c+1

2K

)
, if 1 ≤ c < K,

K/2, otherwise.

The theorem follows from Equation (1).
Theorems VI.2 and VI.1 show that, by increasing the

size of domain K, resulting privacy increases at the cost
of degraded utility.

Exponential-Random-Cache. One drawback of uniform
distribution is that having only one parameter (K) gives
limited flexibility for adjusting the privacy/utility trade-off.
Hence, we also consider truncated geometric distribution as
a candidate for K. Besides K, the shape of this truncated
geometric distribution can be calibrated through an extra pa-
rameter. Assigning exponentially larger probability to small
values of kC results in fewer cache misses on average, at
the cost of additional privacy loss (ε will increase). The
corresponding scheme is called Exponential-Random-Cache.

Consider a random variable G(α) with geometric distri-
bution, i.e., Pr(G(α) = k) = (1−α) ·αk, where k ≥ 0 and
0 < α ≤ 1. Its truncated counterpart denoted by G̃(α, x1, x2)
has a conditional probability distribution and it is defined as:

P (G̃(α, x1, x2) = k) = Pr(G(α)=k)∑x2
i=x1

Pr(G(α)=i) if x1 ≤ k ≤ x2

and 0 otherwise, where [x1, x2] is the truncation interval
(x1, x2 ∈ N0). Therefore:

Pr(G̃(α, 0,K) = r) =
(1− α) · αr

1− αK+1
.

Exponential-Random-Cache is an instantiation of Random-
Cache (Algorithm 1) with K = G̃(α, 0,K − 1). Here, α
and K are input parameters of the algorithm that can be
calibrated to achieve the desired privacy/utility trade-off:

Theorem VI.3 (Privacy). If all cached content is
statistically independent, Exponential-Random-Cache is
(k,−k ln(α), 1−α

k+αK−k−αK

1−αK)-private

Proof: (Sketch) The proof is similar to that of Theo-
rem VI.1. We outline only the main differences. First, we
identically partition Ω into Ω1, Ω2, Ω3. If O ∈ Ω2,

Pr(Qt0 = O)

Pr(Qt1 = O)
=

Pr(kC = prefix (O)− 1)

Pr(kC = prefix (O) + x− 1)
=

=
Pr(G̃(α, 0,K − 1) = prefix (O)− 1)

Pr(G̃(α, 0,K − 1) = prefix (O) + x− 1)
= α−x.

Similarly, Pr(Qt
1=O)

Pr(Qt
0=O)

= αx. Since α < 1, we have

ε ≤ lnα−k. In addition, Pr(Qt1 ∈ Ω1) =
∑x
i=1

(1−α)αi−1

1−αK =
1−αx

1−αK , and Pr(Qt0 ∈ Ω3) =
∑K
i=K−x+1

(1−α)αi−1

1−αK =
αK−x−αK

1−αK . Since Pr(Qt0 ∈ Ω1) = Pr(Qt1 ∈ Ω3) = 0,
we get Pr(Qt0 ∈ Ω1 ∪ Ω3) + Pr(Qt1 ∈ Ω1 ∪ Ω3) ≤
1−αk+αK−k−αK

1−αK .

Theorem VI.4 (Utility). For Exponential-Random-Cache,
u(c) = 1− 1

cE(M(c)), where

E(M(c)) =

{
1−αc−cαK

1−αK + α(1−αc)

(1−αK)(1−α) , if 1 ≤ c < K,
1−(K+1)αK

1−αK + α
1−α , otherwise.

Proof: Using the fact that
∑c
i=1 iα

i−1 =
d
dα

∑c
i=1 α

i = 1−(c+1)αc

1−α + α(1−αc)
(1−α)2 and∑K

i=c+1 α
i−1 = αc−αK

1−α , the theorem follows from
Equation (1) after calculation.

Comparison of Proposed Schemes. Increasing α in the
Exponential-Random-Cache scheme results in better privacy
(smaller ε). However, δ cannot be made arbitrarily small and
it is ultimately determined by α. In particular, δ = 1 − αk
when K =∞, which is the smallest possible δ. In contrast,
δ of the uniform distribution can be arbitrarily decreased by
sufficiently increasing K.

We compare the utility of our schemes in Figure 4. In
Figure 4(a), we adjust the same value of δ, that is 0.05, for
both schemes, and plot their utility for different values of k
while varying ε. In Figure 4(b), we compute the maximum
value of ε = − ln(1− δ) for various combinations of δ and
k, and plot the difference between the utility functions of
the two schemes for varying δ. Both figures show that the
exponential scheme exhibits up to 12% performance gain
over the uniform one; Figure 4(a) also shows that both
schemes achieve better utility as the number of requests

grows.

Addressing Content Correlation. Random-Cache requires
statistically independent content in the cache – a very
strong assumption. Several content may share the same name
prefix, and their access patterns could be strongly correlated.
Under this assumption, Random-Cache as described above
becomes insecure since it allows Adv to sample multiple
points under different k. By requesting a large number of
related content, as soon as Adv receives one without any
delay it learns that – with overwhelming probability – the
whole set of content has been requested before.

To alleviate this problem, correlated content must be
grouped together, e.g., by considering elements from the
same namespace as a single group. Algorithm 1 can then
be applied to these groups rather than to individual content,
i.e., using a single counter cC and value of kC).

Even the above extension cannot be proven secure against
all correlation-based attacks. In many cases, content corre-
lation is even more subtle (e.g., semantically related content
having different names such as linked webpages). This might
be identified with appropriate background knowledge. As a
possible countermeasure, NDN content could be augmented
with a content id field. Producers would populate such field
with identical values for correlated content. Routers could
then determine how to handle such content by observing this
field. However, a thorough analysis of these attacks and of
the corresponding countermeasures is beyond the scope of
this paper.

VII. EXPERIMENTAL EVALUATION

We now evaluate actual impact of our cache privacy
techniques through simulations. To do so, we tested them
using HTTP traffic traces collected by the IRCache [14]
that is part of the The National Laboratory for Advanced
Network Research (NLANR) project [22]. Traces were
collected on September 1, 2007 (over a 24-hour period)
on a Web proxy located at Research Triangle Park, North
Carolina. These traces reflect activity of 185 users, for a
total of approximately 3.2 million requests distributed over
various destinations. We randomly divide requested content
into private and non-private. We “re-played” these traces
with the following algorithms:

1) No Privacy. The router does not use any privacy-
preserving technique.

2) Always Delay Private Content. For each request of
a (cached) private content, the router always generates
a cache miss, while for non-private cached content the
response is always cache hit. This implements the basic
protocol in Section V-B.

3) Uniform-Random-Cache/Exponential-Random-
Cache. Requests for cached private content are
handled according to Algorithm 1. Requests for
non-private cached content always result in a cache
hit.

A router caches all content and removes elements from its
cache (when full) according to the LRU policy. In case of

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 1

Number of Requests (c)

U
ti
li
ty

 (
u

)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 5

Number of Requests (c)
U

ti
li
ty

 (
u

)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

(a) Utility depending on privacy (δ = 0.05)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 1

Number of Requests (c)

U
ti
li
ty

 D
if
fe

re
n

c
e

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 5

Number of Requests (c)

U
ti
li
ty

 D
if
fe

re
n

c
e

δ = 0.05

δ = 0.03

δ = 0.01

(b) Maximal utility difference between Uniform-Random-Cache and
Exponential-Random-Cache when ε = − ln(1− δ)

Figure 4. Uniform-Random-Cache vs. Exponential-Random-Cache

a cache hit, the corresponding cache entry becomes “fresh”
even if the response is delayed.

For the algorithms that classify content into private and
non-private, each incoming request is randomly marked as
private with probabilities 0.05, 0.1, 0.2, and 0.4. Without
loss of generality, we assume that all content has the same
size. We consider 5 cache sizes: 2,000, 4,000, 8,000, 16,000,
and 32,000 content. Furthermore, as a baseline, we also run
the same algorithms with an “unlimited” cache.

We set k = 5 and ε = 0.005. Results are reported in
Figure 5.

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a

c
h
e

 H
it
s
 R

a
te

 (
%

)

No Privacy

Exponential−Random−Cache

Uniform−Random−Cache

Always Delay Private Content

(a) Comparison of our techniques

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a
c
h
e
 H

it
s
 R

a
te

 (
%

)

5% Private

10% Private

20% Private

40% Private

(b) Exponential-Random-Cache varying number of private requests

Figure 5. Cache Hit Rates: Experimental Evaluation Results

VIII. RELATED WORK

There is a large body of work on using side channels
to extract information about other users’ (or applications’)
behavior.

In [11] and [12], the authors introduce a technique that
allows malicious website to learn whether its victim visited
a specific web page. The attacker sends a Java applet to the
victim, detects cache hits with respect to the user’s browsing
cache.

Similarly, Felten et al. [10] show how a malicious website
can determine whether a web page has been downloaded by
its victim. The attack uses a Java applet or Javascript code,
and uses timing information to determine the content of the
browser’s cache. The authors demonstrate the feasibility of
the attack through experiments.

Weinberg et. al [25] show interactive techniques that
allow an adversary to learn the cache content of users’ web
browsers, even if basic defense mechanisms are in place.

Baron [1] proposes a countermeasure for the attacks
in [11], [12], based on completely hiding browsing history:
the rendering behavior of the browser (e.g., link colors,
output of CSS functions) with respect to previously visited
web pages is identical to that with new pages. However,
Baron technique does not work for interactive attacks in [25].
In particular, Weinberg et. al conducted several experiments
to show that interactive attacks and also side channel, e.g.
timing attacks, can still be exploited by malicious activities
to disclose user’s previous visited sites.

In [4], Bortz et al. show two types of timing attacks that
allow the adversary to learn the content of the browser’s
cache. The first attack, called direct timing attack, reveals
whether one or more public website have been visited by
the victim. The second, dubbed cross-site timing attack, is
more dangerous as it can reveal information about private
sections of websites; for instance, it is possible to determine
whether a user is logged in to specific service.

Another application of side channel attacks is the timing
attack on SIP VoIP networks. In [26], the authors provided a
tool that can be used to reveal the “calling history” of a SIP
domain by observing which “recipient digital certificates”
are stored in the local cache. The authors were able to
disclose all phone calls between different SIP domains.

Several countermeasure for cache sniffing have been de-
veloped. In [16], the authors propose a server-side solution
that will protect the users from leaking the content of their
cache. The idea is to randomize and personalize the links
in web pages so a malicious site cannot guess them when it
tries to discover whether they have been visited before.

Schinzel discusses three techniques for mitigating timing-
based side channel attacks in web applications [24]. The
first technique delays all responses such that the total delay
of each response is identical. While this approach does
not leak any information, it introduces considerable delay
and decreases the user experience. The second approach
consists in adding a random delay to each response (the
responses to identical requests referring to the same content
are independently randomized). However, requesting the
same content enough number of times, the adversary can
remove this random noise. The third approach is similar to
the second one but instead of randomizing the delay per
response, a single random delay is selected per destination
in order to prevent the aforementioned attack. All these
approaches randomize response delay of identical requests
independently, which is inefficient in NDN.

Lauinger [18] considers several NDN-related security is-
sues, identifying the problem of cache privacy and overview-
ing several countermeasures, including some approaches
similar to those discussed in this paper. Finally, Crosby et
al. [8] investigate how network latency deteriorates due to
time-based side channels and design filters to reduce the
effects of jitter.

IX. CONCLUSION

This paper explored cache privacy in NDN and identified
several important privacy threats. We then introduced some
counter-measures. First, we suggested that consumers and
producers should indicate which content is privacy-sensitive.
Then, we proposed several techniques that provide certain
tradeoffs between privacy and latency. We also introduced
a formal model that allows us to quantify the degree of
privacy offered by various caching algorithms. We believe
that proposed techniques are general and may be of interest
beyond NDN caching.

REFERENCES

[1] L. Baron. Preventing attacks on a users history through css:
Visited selectors. http://dbaron.org/mozilla/visited-privacy,
2010.

[2] R. Birke, M. Mellia, M. Petracca, and D. Ross. Experiences
of voip traffic monitoring in a commercial isp. IJNM, 20(5),
2010.

[3] M. Borella, D. Swider, S. Uludag, and G. Brewster. Internet
packet loss: Measurement and implications for end-to-end
QoS. In ICPP, 1998.

[4] A. Bortz and D. Boneh. Exposing private information by
timing web applications. In IW3C, 2007.

[5] Android Project. http://www.ccnx.org/wiki/
working-with-ccnx-android-code/.

[6] CCNx Node Model. http://www.ccnx.org/releases/latest/doc/
technical/CCNxProtocol.html.

[7] Content centric networking (CCNx) project. http://www.ccnx.
org.

[8] S. Crosby, D. Wallach, and R. Riedi. Opportunities and limits
of remote timing attacks. TISSEC, 12(3), 2009.

[9] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. Andana:
Anonymous named data networking application. In NDSS,
2012.

[10] E. Felten and M. Schneider. Timing attacks on web privacy.
In CCS, 2000.

[11] R. Focardi, R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini,
F. Martinelli, S. Tini, and E. Tronci. Formal models of timing
attacks on web privacy. ENTCS, 62, 2002.

[12] R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli,
S. Tini, and E. Tronci. Automated analysis of timed security:
A aase study on web privacy. IJIS, 2(3), 2004.

[13] M. Gotz, A. Machanavajjhala, G. Wang, X. Xiao, and
J. Gehrke. Publishing search logs–a comparative study of
privacy guarantees. IEEE TKDE, 24(3):520 –532, 2012.

[14] IRCache Project. http://www.ircache.net/.
[15] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs,

and R. Braynard. Networking named content. In Co-NEXT,
2009.

[16] M. Jakobsson and S. Stamm. Web camouflage: Protecting
your clients from browser-sniffing attacks. S&P Magazine,
5(6), 2007.

[17] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton
E. Uzun, B. Zhang, G. Tsudik, K. Claffy, D. Krioukov,
D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang, P.
Crowley, E. Yeh. Named Data Networking (NDN) project.
Technical report, PARC, 2010.

[18] T. Lauinger. Security & scalability of content-centric net-
working. Master’s thesis, Technische Universitat Darmstadt,
2010.

[19] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
ICDE, 2008.

[20] Named Data Networking project (NDN). http://named-data.
org.

[21] NDN Testbed. http://www.named-data.net/testbed.html.
[22] The National Laboratory for Advanced Network Research

Project. http://www.caida.org/projects/nlanr/.
[23] National Science Foundation of future Internet architecture

(FIA) program. http://www.nets-fia.net/.
[24] S. Schinzel. An efficient mitigation method for timing side

channels on the Web. In COSADE, 2011.
[25] Z. Weinberg, E. Chen, P. Jayaraman, and C. Jackson. I still

know what you visited last summer: Leaking browsing history
via user interaction and side channel attacks. In Symposium
on S&P, 2011.

[26] G. Zhang, S. Fischer-Hübner, L. Martucci, and S. Ehlert.
Revealing the calling history of SIP VoIP systems by timing
attacks. In ARES, 2009.

[27] X. Zhang, H. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. Andersen. Scion: Scalability, control, and isolation on
next-generation networks. In Symposium on S&P, 2011.

