
A Minimalist Approach to Remote Attestation

Abstract—Embedded computing devices increasingly permeate
many aspects of modern life: from medical to automotive,
from building and factory automation to weapons, from critical
infrastructures to home entertainment. Despite their specialized
nature as well as limited resources and connectivity, these
devices are now becoming an increasingly popular and attractive
target for attacks, especially, malware infections. A number of
research proposals have been made to detect and/or mitigate such
attacks. They vary greatly in terms of application generality and
underlying assumptions. However, one common theme is the need
for Remote Attestation, a distinct security service that allows a
trusted party (verifier) to check the internal state of a remote
untrusted embedded device (prover).

This paper provides a systematic treatment of Remote Attesta-
tion, starting with a precise definition of the desired service and
proceeding to its systematic deconstruction into necessary and
sufficient properties. These properties are, in turn, mapped into
a minimal collection of hardware and software components that
results in secure Remote Attestation. One distinguishing feature
of this line of research is the need to prove (or, at least argue
for) architectural minimality, which is rarely encountered in
security research. This work also provides a promising platform
for attaining more advanced security services and guarantees.

I. INTRODUCTION

“Embedded systems” is a broad notion that encompasses
many kinds of specialized computing devices that vary greatly
in terms of resources and intended purposes. Unlike general-
purpose computers that, for decades, have been the primary
attack victims, embedded systems have been targeted only rela-
tively recently. The Stuxnet [9] incident pointedly demonstrated
the impressive scope and impact of malware on embedded
devices. Stuxnet specifically targeted Programmable Logic
Controllers (PLC) in industrial control systems. By modifying
PLC control parameters, it ostensibly caused some serious
physical damage.

Stuxnet should be viewed as both an example, a warning and
a preview of coming attractions. It epitomizes the power and
amplification factor of remote attacks, i.e., those not requiring
direct access to victim devices. With growing presence and
proliferation of networked embedded devices into many spheres
of life, remote software attacks have become a clear and present
danger. This motivates the need for countermeasures, a number
of which have been proposed by the research community and
some have been implemented by manufacturers. One common
theme among them is Remote Attestation – a security service
that involves verification of internal state of a remote embedded
device. Although Remote Attestation is not a panacea, it should
ideally allow for efficient and accurate detection of remote
software attacks.

Prior research results have underscored the difficulty of
the problem. We believe that, although ad hoc or specialized

solutions might work in the near term or for a narrow range of
devices, only systematic approaches to Remote Attestation that
offer concrete security guarantees are likely to prove effective
in the long run. This assertion forms the starting point for the
work described in this paper.

We use the term Remote Attestation to denote attestation
performed across a network. In this setting, software attestation
techniques [13], [16], [17], [25]–[29] are not applicable since
software attestation is secure only if the verifier communicates
directly to the prover, with no intermediate hops [5]. At the
other end of the solution spectrum are techniques based on
secure hardware components, such as TPMs [33] or secure
co-processors [31]. However, they represent a significant cost
barrier for low-end embedded devices. We believe that the
promise lies in a careful analysis of Remote Attestation as a
distinct security service, including systematic identification of
its necessary and sufficient components. This should ideally
result in the design of a generic and practical embedded system
architecture for Remote Attestation.

In this paper, we follow the above path: starting with the
definition of Remote Attestation, we derive exact properties
needed to attain it. We then translate them into architectural
components, which we then map into a small set of hardware
features that collectively achieve all required properties. We
argue that the set of identified features form the minimal generic
architecture for Remote Attestation. In the process, we remain
agnostic with respect to the underlying hardware by making
fewest possible assumptions about specific devices. We believe
that the outcome of this effort is valuable as it represents the
first attempt to systematically explore the notion of Remote
Attestation and to produce a light-weight blueprint that can be
realized on wide range of devices, with minimal modifications.

II. RELATED WORK

Software-Based Attestation. One early example of
software-based attestation is Pioneer [28]. which does not
rely on a secure co-processor or any specialized hardware.
Pioneer computes a checksum of device memory using a
function that includes side-effects (e.g., status registers) in its
computation, such that any emulation of this function incurs a
timing overhead sufficiently long to detect cheating. Attestation
that relies on time-based checksums has also been adapted to
embedded devices in [13], [16], [17], [25]–[27], [29]. However,
some assumptions that form the basis for these solutions have
been challenged [30] and several attacks on these (and similar)
schemes have been proposed [5]. Moreover, Kovah et al. [14]
showed that time-based attestation schemes may be vulnerable
to Time Of Check, Time Of Use (TOCTOU) attack.



In general, all current software-only solutions rely on strong
assumptions on adversarial capabilities and only work if
the verifier communicates directly to the prover, with no
intermediate hops. While applicable to specific settings (e.g.,
attestation of computer peripherals), this approach is not viable
for attestation performed over a network.

Static Root of Trust. An early example of a hardware-based
mechanism is Secure Boot [3] which verifies system integrity
at boot time. The root of trust is an immutable bootloader
that is stored in ROM together with a public key. It verifies
code signature and will execute it (i.e., boot) only when the
signature is correct, ensuring the origin of the code.

Trusted Platform Modules (TPMs) [33] are now present in
many commercial systems and are used in several concrete ar-
chitectures [13], [22]. TPM security is based on two properties:
(1) Platform Configuration Registers (PCRs) accessible only
via a fixed API, and (2) PCRs that are reset only on boot, and
each new measurement added (extended) to a PCR is added
using a cryptographic hash of the previous PCR value and the
new measurement. A TPM can sign a set PCRs that represent
the load time state of the software that was executed on the
computer. TPM is a static mechanism where the root of trust
is the BIOS that performs the very first extension upon boot.

Dynamic Root of Trust. A dynamic root of trust provides
a mechanism that can be used to perform an attestation dynam-
ically, i.e., on the current state of the software. This requires
additional features present in extended trusted computing
specifications [33] as well as by CPU and chipset support
by major vendors (e.g., Intel TXT [10] and AMD SVM [2]).

Flicker [18] is an architecture that establishes dynamic root
of trust on commodity computers. It uses CPU extensions to
execute a Piece of Application Logic (PAL) on the prover.
Execution of PAL is guaranteed even if the platform’s BIOS,
OS and DMA are all compromised.

There are several techniques for remote trust establish-
ment [12], [19]–[21], [34] with Underlying platforms range
from Web servers to embedded systems.

Other Hardware-Based Techniques. SPM [32] is a recent
hardware-based mechanism for process isolation that uses a
special vault module bootstrapped from a static root of trust.
The vault bootstraps the SPM-protected programs, which gain
exclusive control over the protection of their own memory
pages. SMART [8] is a hardware-based scheme for establishing
a dynamic root of trust in embedded devices. Its focus is
on low-end microcontrollers (MCUs) that lack sophisticated
features, such as specialized memory management or protection
features. SMART requires small changes to the MCUs with
a limited hardware impact. Datta et al. [7] proposed LS2, a
logic for secure systems relying on a TPM. They use this to
describe attestation protocols standardized by the TCG, without
providing a definition of attestation. In contrast, we aim at
describing the requirements at a lower level, without assuming
the presence of a TPM or a similar device. This is because
this would incur an unacceptable increase of complexity or
cost of the low end embedded device.

III. REMOTE ATTESTATION

We use the term Remote Attestation to denote a protocol,
whereby a challenger (Chal) verifies the internal state of another
device called a prover (Prov). This protocol is performed
remotely, i.e., over a network. The goal of the protocol is
to allow an honest (not compromised) Prov to create an
authentication token, that convinces Chal that the former is in
some well-defined (expected) state. Whereas, if Prov has been
compromised and its state has been modified, the authentication
token must reflect this. We begin by defining the “remote
attestation protocol”.

Definition 1 (Remote Attestation Protocol): A protocol P
comprised of the following components:
• Setup(1κ) – a probabilistic algorithm that, given a security

parameter 1κ, outputs a long-term key k;
• Attest(k, s) – a deterministic algorithm that, given a key
k and device state s, outputs an attestation token α;

• Verify(k, s, α) – a deterministic algorithm that, given a
key k, a device state s and an attestation token α, outputs
1 iff α corresponds to s, i.e., iff Attest(k, s) = α, and
outputs 0 otherwise.

At the time of attestation, Prov’s state s = (sChal, sProv)
consists of two parts: (1) sChal provided by Chal, e.g., a nonce,
and (2) sProv that reflects the rest of Prov’s state.

Next we define a game between Chal and Prov that will lead
to the definition of security for remote attestation protocols.

Game 1 (Att-ForgeryChal,Prov(κ)): Chal running P interacts
with Prov as follows:

1) Chal runs k ← Setup(1κ) and outputs sChal to Prov.
2) Prov is given oracle access to Attest. Specifically, Prov is

allowed to adaptively submit q device states {s1, . . . , sq}.
For each si 6= (sChal, sProv), Prov receives the correspond-
ing token αi.

3) Eventually, Prov outputs α; the game outputs 1 iff
Verify(k, s, α) = 1, i.e., iff α corresponds to s =
(sChal, sProv).

An honest Prov can trivially create α using Attest(k, s).
Whereas, if Prov has been compromised, its sProv has changed
and it must attempt to simulate the operation of Attest.
This security game bears some resemblance to a MAC-Forge
game [4]. Section VI-A discusses the relationship between
remote attestation and MACs.

We now define our security notion, based on Game 1.

Definition 2 (Att-Forgery security): A remote attestation
protocol P = (Setup,Attest,Verify) is Att-Forgery-secure
if there exist a negligible function negl, such that, for any
probabilistic polynomial time prover Prov and sufficiently large
κ, it holds that: Pr[Att-ForgeryChal,Prov(κ) = 1] ≤ negl(κ)

To simplify our notation we say that P is a secure remote
attestation protocol if P is Att-Forgery-secure. In Section IV,
we identify the properties that Attest must have for remote
attestation to be possible.

2



A. System Model

The central goal of any remote attestation protocol is to verify
Prov’s state. Successful protocol execution does not guarantee
that Prov’s entire system can be trusted or that the adversary
can not modify Prov’s state after attestation is completed.

We assume that Prov is a low-end embedded device with a
single thread of execution, limited storage capacity and a low
general complexity. Although our definition of Att-Forgery-
security is valid for any device, its motivation is strongest for
low-cost platforms where adding secure hardware components
(e.g, a TPM [33]) would be too costly.

We make no assumptions about Chal. In particular, a
malicious Chal can perform a denial-of-service (DoS) attack
by forcing Prov to take part in the remote attestation protocol
at will. Our security model is focused on a possibly malicious
Prov and protection of Prov against DoS attacks is not a
primary goal. In the rest of this paper, we assume that Chal is
honest. Note that sChal (the part of Prov’s state sent by Chal)
can contain any information that Chal wants to be included in
the computation of α, e.g., a nonce, a sequence number or a
timestamp.

We assume a reliable communication channel between Chal
and Prov. We make no assumptions about its security, latency,
packet routing or any other properties.

B. Adversary Model

We do not specify how Prov might be compromised; we
assume that the adversary can do so at any time. Once Prov
is compromised, we use the term prover to mean the device
itself and the term adversary to reflect the adversary’s presence
on the prover. The distinction is relevant because, in order to
implement remote attestation securely, there must exist some
secret quantity (i.e., a key) that the adversary can not access,
even though it is in (almost) full control of Prov. We discus
the necessary properties for this in Section IV and practical
considerations in Section V.

Once Prov is compromised, the adversary has full control
over the CPU. It can schedule interrupts at will, read all readable
storage (including ROM) and write to all writable storage. The
only behavioral restrictions are those imposed by the hardware,
e.g., the adversary can not write to ROM or force an interrupt
if interrupts are disabled. We also assume that the adversary
can not perform any hardware modifications to the prover, e.g.,
tamper with the digital logic, install a different CPU or add
more memory.

Hardware side channels (e.g., measuring power consumption
to infer bits of the key) or fault attacks (e.g., power glitches
leading to incorrect execution of instructions) are very effective
attacks on embedded systems. However, they are often dealt
with by dedicated countermeasures (e.g., glitch sensors, dual
rail logic...), and are therefore out of the scope of this paper.
Similarly, we assume that Attest is free of software vulnera-
bilities, implementation flaws and software side-channels (e.g.,
a software-only time channel attack).

While those attacks are important to consider in a secure
embedded system, they are beyond the scope of the current

paper. Indeed, we first aim at getting the design of remote
attestation right before implementing a complete hardened
system.

IV. PROPERTIES REQUIRED FOR REMOTE ATTESTATION

In this section, we describe the necessary security properties
that Attest must satisfy in order to be used for secure
attestation.

As follows from definition 2, Attest must satisfy the
following security properties: (1) only Attest can compute
a valid token α, and (2) α accurately captures the device state
s, i.e., for any two states s′ 6= s, Attest(k, s) = Attest(k, s′)
with negligible probability. These observations leads us the
following two attacks:
• Attack type 1: The adversary simulates Attest and

correctly computes α.
• Attack type 2: Returned α does not correctly reflect s,

i.e., the adversary escapes detection.
We now derive the complete set of security properties that

a function Attest must have in order to be Att-Forgery secure.
Since the key k is the only secret held by Prov, access to k
allows the adversary to simulate Attest, i.e., perform a type
1 attack by computing α without invoking the actual Attest.
Therefore, we need the following property:
• Exclusive Access: Attest has exclusive access to k.

Exclusive access to k does not imply that the adversary
can not learn some intermediate value that leaks information
about k. Suppose that Attest(k, s) = HMAC(k, s) = H(k ⊕
opad,H(k ⊕ ipad, s)) and k ⊕ ipad is somehow leaked, e.g.,
remains in memory after computation of α. This will allow
the adversary to learn k, and use it to compute α. Therefore
we need the following property:
• No Leaks: Attest leaks no function of k other than α.

Another way of stating this property is that, after Attest
completes, the entire state of Prov (except for α and k itself)
is statistically independent from k.

If the code that makes up Attest is not protected, the
adversary can modify it, for example by forcing it to output k
(i.e., violate the “exclusive access” property). For this reason,
an additional property is required:
• Immutability: Attest (i.e., its code) is immutable.

We stress that this security property requires code to be executed
in-place from immutable memory. This is not always the case,
e.g., when code is loaded from low-speed storage (e.g., FLASH)
to high-speed memory, such as RAM or cache before execution.
The adversary could modify Attest after it is loaded into RAM,
but before it is executed [24]. This is an instance of the well-
known time-of-check-to-time-of-use (TOCTTOU) attack, that
can be prevented by a hardware signature check of the code,
as in [10].

Taken together, the three aforementioned properties are
insufficient to protect Attest. Consider the case where a
memory region is attested sequentially. When attestation reach
the region containing malicious code, attestation is interrupted,
malicious code moved to an already verified memory location
and the original memory is restored before resuming attestation.

3



This allows the adversary to escape detection. This is an
example of a type 2 attack.

Note that checking memory in a pseudo-random fashion, as
in [28], [29], does not solve the problem since the adversary can
schedule an interrupt every time the next address is computed.
Then, if the next address falls into the memory range occupied
by malware, it moves its code fragment elsewhere and restores
memory to its expected state. To prevent such attacks, we need
another property:
• Uninterruptibility: Execution of Attest must be uninter-

ruptible.
There remains a potential attack, despite all security properties
described so far: the adversary can start execution in the middle
of Attest skipping important parts of the code. Suppose that,
in the beginning of Attest, there is an instruction to enforce
uninterruptible execution environment. Then, if the adversary
can start execution of Attest just after that instruction, the
remainder of Attest would run in an interruptible manner,
which leads attacks of types 1 and 2, as shown earlier.

Assuming uninterruptibility of Attest, it might seem that
if the very first instruction of Attest loads the secret key k,
then, even if the adversary invokes Attest in the middle, no
information derived from k can be learned and a valid α can
not be computed. However, this argument is incorrect, for the
following reasons:

First, in some instruction sets (e.g, Intel x86 [11]), skipping
the first byte(s) of an instruction can lead to decoding a
different instruction. Therefore, the adversary can jump into
carefully selected locations in Attest changing its semantics
in an unintended manner. Naturally, we prefer not to rely on
features of a specific instruction set in stating general security
properties. Second, the stated argument assumes that invoking
Attest in the middle precludes the adversary from reading
k. However, the adversary may be able to perform a return
oriented programming (ROP) [6], [15], [23] attack, as follows:
. .
Jump into the beginning of some function within Attest. Since
the jump instruction does not push a return address onto
the stack, the stack will be “de-synchronized”, i.e., the value
specified in the stack by the adversary will become the return
address of the function. When the function returns, it will jump
to the address chosen by the adversary. This way, the adversary
can cause Attest to jump anywhere within Attest code.
. .
In general, if the adversary can influence control flow of Attest
and alter its behavior it can induce Attest to leak k by reading
it from the restricted memory or avoid to erase it later. To
prevent all such attacks, we need one final property:
• Controlled Invocation: Attest must only be invoked from

an intended entry point1.

1Although Control-Flow Integrity (CFI) [1] is a desirable property of Attest,
it must not be confused with Controlled Invocation which is still required
because the attacker is able to load its own code in the device which would
allow him to skip some instructions of Attest despite the presence of CFI.
We consider CFI to be part of the code correctness assumptions of Attest.

In summary, the first three properties: exclusive access,
immutability and no leaks, are necessary (but not sufficient) to
prevent type 1 attacks. Whereas, the other two (uninterruptibil-
ity and controlled invocation) together enforce a semantically
atomic execution of Attest. Although they also prevent some
attacks of type 1, they mainly prevent type 2 attacks.

Under the assumptions made above, we claim that any
correctly implemented attestation protocol, that has all five
properties listed in this section is Att-Forgery-secure.

A. Minimality of Properties

We now argue that removing any of the postulated five
properties, leads to an insecure Attest. Note that each property
is largely independent and eliminating any of them will make
Attest vulnerable to the attack(s) described just above that
property in the previous section. Specifically, if we were to
omit:
• Exclusive Access to k: the adversary would easily learn k.
• No Leaks: the adversary would learn information about k

that could lead to an advantage in computing a valid α.
• Immutability: the adversary could change the code to

move k to unprotected memory.
• Uninterruptibility: the adversary could move malware

around during attestation, which helps escape detection.
• Controlled Invocation: the adversary could invoke Attest

anywhere, which might cause it to be interruptible and/or
skip sanity checks on input parameters.

It thus becomes clear that any proper subset of the five
properties is insufficient for secure remote attestation.

V. DERIVING FEATURES FROM
PROPERTIES

In this section, we describe a combination of platform
features that achieve the five security properties presented
above. Our goal is to obtain a set of features that are both
necessary and sufficient for remote attestation. We examine
each property and identify features needed to attain it.

Exclusive Access to k. This is the most difficult property
to impose on a low-end embedded device. There is no way to
achieve it without some hardware support. If the underlying
processor supports multiple privilege modes and a full-blown
separation of memory for each process, we could use a
privileged process to handle all computations that involve
k. However, low-end processors generally do not offer such
features.

Our solution is to add a small hardware-based check that
monitors the address bus and program counter (PC) and
enforces k only being accessible when PC is within Attest.
We believe that this “custom” hardware check is unavoidable.

No Leaks. To make sure that no information related to (or
derived from) k is accessible when Attest completes we need
a way to erase all intermediate values that depend on k, except
the attestation token α, when they are no longer needed.

Immutability. In order to make Attest immutable we place
it in ROM, which is available on most platforms. We consider

4



ROM to be an inexpensive way to enforce immutability2. Attest
needs to execute in-place from ROM.

Uninterruptibility. On a platform with a single thread of
execution, the adversary can still regain control after invoking
Attest by scheduling an interrupt. To enforce uninterruptibility,
we need a way to disable (and enable) interrupts such that
Attest will run from beginning to end. Moreover, the instruction
to disable interrupts must itself be atomic. Otherwise, the
adversary could interrupt this instruction and violate atomicity
of Attest.

Controlled Invocation. As discussed earlier, we must
enforce exclusive invocation of Attest from its very first
instruction. Since there is no OS or protected CPU mode
that can enforce this on low-end devices, custom hardware is
needed. As before we use a small piece of custom hardware that
enforces the following logic: If the program counter (PC) is an
address within the Attest code, other than the first instruction
address, then the previous instruction must also be within
Attest.

Secure Reset. Although Controlled Invocation precludes
the adversary from jumping to the middle of Attest, in practice,
there is no way to prevent this from happening in an embedded
system. The only option is to reset the device if this property,
or any other one, is violated. Such a reset must be triggered
in hardware and, to prevent any sensitive memory contents to
be leaked, all memory must be erased immediately after the
device is reset.

Features described in this section form a set that is necessary
and sufficient to support the security properties described in
Section IV. We summarize them as:
• Custom hardware to enforce exclusive access to k.
• Reliable and secure memory erasure.
• Read-only-memory (ROM).
• Enable-interrupts and atomic disable-interrupts instruc-

tions.
• Custom hardware to enforce Attest being invokable only

at the first instruction.
• Secure reset mechanism.

A. Asymmetric Cryptography

In terms of cryptographic primitives, our discussion has been
focused on symmetric techniques. One interesting question is
whether there are any benefits in using public key cryptography,
i.e., digital signatures.

At the first glance, digital signatures would significantly
complicate Attest code in terms of both size and execution
speed. (Incidentally, the latter would increase the impact of
DoS attacks.) Also, instead of a shared k, the prover would
need to store its private key sk (in a secure location). However,
none of this prompts the need for additional security features
or components. On the other hand, as far as the verifier is
concerned, α produced using a MAC is no less and no more

2Choices other than ROM may be possible as well (e.g., a latched EEPROM),
but they would likely incur more complexity and thus detract from our goal
of designing a minimalist mechanism.

secure than a digital signature computed over the same state.
(Recall that our adversary model allows prover’s compromise
but not hardware attacks that could extract k or sk.) We believe
that the only potential advantage of digital signatures can be
obtained if the application requirements of Remote Attestation
include public verifiability of attestation tokens.

VI. DISCUSSION

In this section we discuss some issues that were not
adequately addressed earlier.

A. Comparison with MAC

Our definition of Remote Attestation functionality shares
some features with the well-known and well-studied Message
Authentication Code (MAC) primitive. Suppose that the legiti-
mate prover has some secure hardware that can compute both
MACs and attestation tokens. Furthermore, assume that the
adversary can interrupt secure hardware execution. Whenever
the verifier sends the challenge that includes a, n and a
nonce, along with expected memory contents in memory range
[a, a+ n), the prover sends back to the verifier: the challenge,
its MAC and α. Suppose that adversarial code resides in
memory region [a + n/2, a + n). When MAC (or Attest)
finishes computation for [a, a+ n/2), the adversary interrupts
the secure hardware, moves outside that range and restores all
memory [a+ n/2, a+ n) to original contents. In this scenario,
both MAC and α are computed correctly.
• The verifier believes that MAC is computed by the genuine

prover.
• The verifier can not assert absence of adversarial code in

memory range [a, a+ n) at attestation time.
This situation illustrates that uninterruptibility is not essential
for MAC computation, whereas, it is essential to the security
of remote attestation.

B. Comparison with Secure Hardware

While deconstructing our definition of remote attestation
into properties, and mapping them to features, we described
a mixed hardware-software system. Another option would be
to design a purely hardware component that computes Attest
atomically. Would a design based on a single piece of secure
hardware require fewer security properties?

First, we only claim minimality of security properties that
are quite independent of the specific architecture, rather than
minimality of security features that are architecture-specific.

Second, we need to consider what security properties must be
satisfied by the secure hardware component itself. In particular,
this component would still have to satisfy all five security
properties described earlier.

C. Untampered Execution Environment

Attest does not automatically set up an untampered execution
environment. However, it runs uninterrupted and authenticity
of α guarantees absence of adversarial code in state s, at
attestation time. We can take advantage of these properties to
set up an untampered execution environment as follows.

5



Suppose that Attest disables interrupts during execution,
as in Section V. First, the verifier sends the challenge that
includes the nonce, the code to be executed, and (optionally)
the expected dynamic environment state, i.e., stack memory
location, global configuration variables, etc. Then, prover runs
Attest uninterrupted: it computes α, returns it to verifier, checks
that the start address of the code is outside Attest and, if so,
Attest immediately hands over control to the received code.
Thus, when verifier receives a valid α, it learns that the code
it sent was executed uninterrupted in an untampered execution
environment. This approach is similar to SMART [8].

VII. CONCLUSION

This paper provided an in-depth systematic treatment of
Remote Attestation and defined a new security notion for
remote attestation protocols. Using this notion, we identified
the necessary and sufficient properties needed for a device
to support secure remote attestation. We then mapped these
properties into a minimal collection of hardware and software
components that collectively yield a secure attestation primitive.
We also presented a protocol that uses the this primitive to
achieve secure remote attestation, over a network, such as the
Internet. We showed that such protocols can be made both
simple and efficient.

This work represents the first step towards a systematic study
of Remote Attestation. There remain some important issues
and questions for future work. Although we argued that the
identified properties and derived components that collectively
represent a minimal architecture for Remote Attestation, there
could well be other sets of components that also achieve
minimality. We plan to further investigate this and implement
the proposed architecture on several commodity platforms,
possibility using public key digital signature as an alternative
to symmetric MAC constructs. Finally, our future work will
include the development of methods for automated verification
of such properties on actual implementations.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM TISSEC, 13(1):4:1–
4:40, Nov. 2009.

[2] Advanced Micro Devices. AMD, Secure Virtual Machine Architecture
Reference Manual. Publication No. 33047, Revision 3.01, May 2005.

[3] W. A. Arbaugh, D. J. Farbert, and J. M. Smith. A secure and reliable
bootstrap architecture. IEEE S&P, 1997.

[4] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System,
839:1–36, 2000.

[5] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty
of software-based attestation of embedded devices. ACM CCS, 2009.

[6] S. Checkoway, L. Davi, A. Dmitrienko, and A.-r. Sadeghi. Return-
Oriented Programming without Returns. ACM CCS, 2010.

[7] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems
and its application to trusted computing. In IEEE S&P, 2009.

[8] K. E. Defrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure
and Minimal Architecture for (Establishing Dynamic) Root of Trust. In
NDSS, 2012.

[9] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. Symantec,
October 2010.

[10] Intel Corporation. Intel Trusted Execution Technology (Intel TXT) –
Software Development Guide, 2009. doc: 315168-006.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual, March 2012.

[12] R. Kennell and L. H. Jamieson. Establishing the Genuinity of Remote
Computer Systems. In USENIX Security Symposium, 2003.

[13] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence. IEEE/IFIP DSN, 2009.

[14] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth. New Results for Timing-Based Attestation. In IEEE
S&P, 2011.

[15] S. Krahmer. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. Technical report, suse, September 2005.

[16] Y. Li, J. M. McCune, and A. Perrig. SBAP: Software-Based Attestation
for Peripherals. TRUST, 2010.

[17] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the Integrity of
PERipherals Firmware. In ACM CCS, 2011.

[18] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In EuroSys,
2008.

[19] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.
How low can you go?: recommendations for hardware-supported minimal
TCB code execution. ACM ASPLOS, 2008.

[20] C. Nie. Dynamic root of trust in trusted computing. TKK T1105290
Seminar on Network Security, 2007.

[21] B. J. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Commodity Computers. In IEEE S&P, 2010.

[22] S. Pearson, M. C. Mont, and S. Crane. Persistent and Dynamic Trust:
Analysis and the Related Impact of Trusted Platforms. Security, 3477,
2005.

[23] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. Manuscript, V,
2009.

[24] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In
USENIX Security Symposium, 2004.

[25] A. Seshadri, M. Luk, and A. Perrig. SAKE: Software attestation for key
establishment in sensor networks. Ad Hoc Networks, 9(6), 2008.

[26] A. Seshadri, M. Luk, A. Perrig, L. V. Doorn, and P. Khosla. SCUBA:
Secure Code Update By Attestation in sensor networks. In ACM WiSec,
2006.

[27] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Using FIRE
& ICE for Detecting and Recovering Compromised Nodes in Sensor
Networks. Technical Report December 2004, DTIC Document.

[28] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla. Pi-
oneer: verifying code integrity and enforcing untampered code execution
on legacy systems. ACM SIGOPS OSRw, 39(5), 2005.

[29] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. SWATT: software-
based attestation for embedded devices. In IEEE S&P, 2004.

[30] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to
authenticate software. USENIX Security Symposium, 8(3), May 2004.

[31] S. W. Smith. Outbound Authentication for Programmable Secure
Coprocessors. International Journal of Information Security, 3(1), 2004.

[32] R. Strackx, F. Piessens, and B. Preneel. Efficient Isolation of Trusted
Subsystems in Embedded Systems. SecureComm, 2010.

[33] Trusted Computing Group. TPM Main Specification Level 2 Version 1.2.
[34] Q. Yan, J. Han, Y. Li, and R. Deng. A software-based root-of-trust

primitive on multicore platforms. In ACM ASIACCS, 2011.

6


