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Abstract

This paper explores practical and conceptual impli-
cations of using Server-Aided Signatures (SAS). SAS
is a signature method that relies on partially-trusted
servers for generating public key signatures for regu-
lar users. Besides its two primary goals of 1) aiding
small, resource-limited devices in computing heavy-
weight (normally expensive) digital signatures and 2)
fast certificate revocation, SAS also offers signature
causality and has some interesting features such as
built-in attack detection for users and DoS resistance
for servers.

1 Introduction

Digital signatures represent a basic building block for
many secure applications. Their uses range from elec-
tronic commerce transactions to secure email, secure
content (code, video, audio) distribution and other,
more specialized applications such as document no-
tarization. Traditionally, digital signatures are based
on asymmetric (public key) cryptographic techniques
which, at least in some settings, makes them compu-
tationally expensive.

While digital signatures are rapidly becoming ubiq-
uitous, one of the major recent trends in computing
has been towards so-called “smart” devices, such as
PDAs, cell phones and palmtops. Although such de-
vices come in many shapes and sizes and are used
for a variety of purposes, they tend to have one fea-
ture in common: limited computational capabilities
and equally limited power (as most operate on bat-
teries). This makes them ill-suited for complex cryp-
tographic computations such as large number arith-
metic present in virtually all public key constructs.

Furthermore, in many envisaged setting, such as
cell telephony and wireless web access, personal de-
vices are in constant contact with a fixed, wired in-

frastructure. Consequently, access to more powerful
(in terms of both CPU speed and not dependent on
batteries) computing platforms is available to end-
users.

At the same time, increased use of digital signa-
tures accentuates the need for effective revocation
methods. Revocation of cryptographic credentials
and certificates has been an issue for a long time.
However, only now the problem is becoming truly
visible, e.g., the recent Verisign fiasco where a wrong
certificate was issued (ostensibly to Microsoft) and
its subsequent revocation was both slow and painful.
Furthermore, current CRL-based revocation methods
scale poorly and are not widely used in practice. For
example, most current web browsers do not bother
checking CRLs; only the upcoming Windows XP has
some rudimentary CRL-checking facilities.

Effective revocation not only useful but vital in
some organizational settings (e.g., government and
military) where digital signatures are used on impor-
tant electronic documents and in accessing critical
resources. Consider a situation when a trusted user
(Alice) does something that warrants immediate re-
vocation of her security privileges. Alice might be
fired, transferred or she may suspect that her private
key has been compromised. Ideally – immediately
following revocation – no one should be able to per-
form any cryptographic operations involving Alice’s
certificate, i.e., sign with her private key.

In addition, when a cryptographic certificate is re-
voked (or simply expires) digital signatures generated
prior to revocation (or expiration) may need to re-
main valid. This is difficult to achieve with current
revocation methods since CRLs (and similar meth-
ods like OCSP [1]) do not provide a secure means of
distinguishing between pre- and post-revocation sig-
nature activity. The only way to do so is by using
a secure timestamping service for all signatures. Al-
though a secure timestamping service may provide a
secure means of distinguishing between pre- and post-
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revocation signature, it has not been widely adopted
due to its prohibitive cost. Finally, we note that com-
promise of a private key can lead to an unlimited
number of fraudulent signatures being generated and
distributed by the adversary. As often happens in
the event of compromise, contact with the revocation
authority (CA) may not be immediate, e.g., in a spo-
radically connected wireless network. Therefore, it is
important to find a way to limit potential damage.

In this paper we present a method, called Server-
Aided Signatures (SAS), that is designed to addresses
the aforementioned issues. Its goals are three-fold:

1. Assist small, limited-power devices in computing
digital signatures

2. Provide fast revocation of signing capability

3. Limit damage from potential compromise

The rest of the paper is organized as follows. Next
section provides a brief synopsis of our work and its
contributions. Section 5 describes the SAS method in
greater detail; it is followed by the security analysis
in Section 6. Denial of service issues are addressed
in Section 7. Then, implementation and performance
measurements are discussed in Section 8. The paper
concludes with the summary of benefits and draw-
backs of SAS.

2 Synopsis

The signature method (SAS) discussed here is based
largely on a weak non-repudiation technique due
to Asokan et al. [2]. The most notable feature
of the SAS method is its on-line nature. Specifi-
cally, each SAS signature is generated with the aid
of a partially-trusted server called a SEM (short for
SEcurity Mediator). This feature can be viewed as a
mixed blessing. Although it offers a number of ben-
efits which are summarized below, the requirement
for on-line help for each signature is clearly a burden.
We discuss the drawbacks, both real and perceived,
in Section 9.

Informally, a SAS signature is computed as follows
(see also Figure 1):

• First, a prospective signer (Alice) contacts her
SEM and provides the data to be signed as well
as a one-time ticket.

• SEM checks Alice’s revocation status and, if not
revoked, computes a half-signature over the data
as well as other parameters (including the one-
time ticket). SEM then returns the results to
Alice.

• Alice verifies SEM’s half-signature and produces
her own half-signature. Put together, the two re-
spective half-signatures constitute a regular, full
SAS signature. This signature is accompanied
by SEM’s and Alice’s certificates.

The two half-signatures are inter-dependent and each
is worthless in and of itself. This is despite the SEM’s
half-signature being a traditional digital signature: in
the context of SAS, a traditional signature computed
by a SEM is not, by itself, a SAS signature. The half-
signature computed by a user (Alice, in our example)
is actually a one-time signature [3].

Figure 1: SAS architecture

Verifying a SAS signature is easy: verifier (Bob)
obtains the signature and verifies the two halves along
with the two accompanying certificates.

The main idea is that a SEM, albeit only partially
trusted, is more secure, and much more capable (in
terms of CPU and power consumption) than an aver-
age user. It can therefore serve a multitude of users.
Also, because of its “superior” status, SEM is much
less likely to be revoked or compromised. Since a
signer (Alice) is assumed to have much less comput-
ing power then a SEM, the latter performs the bulk of
the computation, whereas, Alice does comparatively
little work. In the event that Alice’s certificate is re-
voked, the SEM simply refuses to perform any further
signatures on Alice’s behalf. (See Figure 1.) Thus,
revocation is both implicit and fast. However, this
does not obviate the need for Certificate Revocation
Lists (CRLs) since Alice’s certificate may be revoked
after some fraudulent signatures have been already
generated. A CRL may still be necessary to convey
to all verifiers the exact time of revocation and hence
to sort out pre- and post-revocation signatures.

The general system model of SAS is a good fit for
many mobile settings. For example, as mentioned in
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Section 1, cell phones are only usable when in touch,
via a nearby base station, with a fixed infrastructure.
Each phone-call requires communication with the in-
frastructure. This communication can be overloaded
to piggyback SAS protocol messages.

3 Related Work

The SAS method is based on a weak non-repudiation
technique proposed by Asokan et al. in [2]. In very
general terms, SAS is an instantiation of a mediated
cryptographic service. Recent work by Boneh et al.
[4] on mediated RSA (mRSA) is another example of
mediated cryptography. mRSA provides fast revoca-
tion of both signing and decryption capability. How-
ever, the computation load on the client end is in-
creased in mRSA, which is something that SAS aims
to minimize.

In [5] Reiter and McKenzie propose a the same ad-
ditive splitting technique to improve the security for
portable devices where the private-key operations are
password-protected. Recently, they also proposed an-
other scheme for the more challenging problem of me-
diated (2-party) DSA signatures [6]. Ganesan[7] also
exploited (earlier, in 1996) the same idea for improv-
ing Kerberos security as part of the Yaksha system.

Another way to look at SAS is as an instantiation of
“hybrid” multi-signatures [8]. Viewed more broadly,
the SAS method can be included in the more general
framework of threshold cryptography[9] and secure
multi-party computation[10].

There is also much related work on the topic of cer-
tificate revocation; including CRLs, ∆-CRLs, CRTs,
2-3 lists and skip-lists. This is reviewed in more detail
in Appendix B.

4 Background

In this section we go over some preliminaries neces-
sary for the remainder of the paper.

4.1 Hash Functions

Informally, a one-way function f() is a function
such that, given an input string x it is easy to com-
pute f(x), whereas, given a randomly chosen y, it
is computationally infeasible to find an x such that
f(x) = y. A one-way hash function h() is a one-way
function that operates on arbitrary-length inputs to
produce a fixed length digest. If y = h(x), y is com-
monly referred to as the hash of x and x is referred
to as the pre-image of y. A one-way hash function

h() is said to be collision-resistant if it is compu-
tationally hard to find any two distinct input strings
x, x′ such that h(x) = h(x′).

Several secure and efficient collision-resistant one-
way hash functions have been proposed, e.g., SHA or
MD5 [11]. In the rest of the paper, h() denotes a
collision-resistant one-way hash function.

A collision-resistant one-way hash function can be
recursively applied to an input string. The notation
hi(x) is the result of applying h() i times starting
with the input x, that is:

hi(x) = h(h(. . . h(h(x)) . . .))︸ ︷︷ ︸
i times

Recursive application results in a hash-chain gener-
ated from the original input:

x = h0(x), h1(x), . . . , hn(x)

Hash chains have been widely used since early 1980-s
starting with the well-known Lamport’s method [12].

4.2 Model and Notation

We distinguish among 3 types of entities:

• Regular Users – entities who generate and verify
SAS signatures.

• Security Mediators (SEMs) – partially-trusted
entities assisting regular users in generating SAS
signatures.

• Certification Authorities (CAs) – trusted off-line
entities that issue certificates and link the iden-
tities of regular users with SEMs.

SEMs and CAs are verifiable third parties from the
users’ point of view.

All participants agree on a collision-resistant one-
way hash function family H and a digital signature
scheme. In SAS, the latter is fixed to be the RSA
scheme [13]. Furthermore, each signer (Alice) selects
a “personalized” hash function hA() ∈ H. In essence,
hA() can be thought of as a keyed hash (e.g., [14])
with a known key set to the identity of the signer.
When applied recursively, we also include the index
of the hash function link in each computation, i.e.,
hi

A(x) can be thought of as a keyed hash where the
known key is the concatenation of the signer’s iden-
tity (Alice) and the index of the link, i.

In order to minimize computation overhead for reg-
ular users, h() must be efficient and the digital sig-
nature scheme must be efficient for verifiers. (This
is because, as will be seen below, verification is done

3



by regular users, whereas, signing is done by much
more powerful SEMs.) SHA and MD5 are reason-
able choices for the former, while RSA [13] satisfies
the efficient verification requirement when used with
a small exponent such as 3, 17 or 65,537.

4.3 Communication Channel

We assume that the communication channel between
each user and a SEM is reliable (but neither pri-
vate nor authentic). Reliability of the channel implies
that the underlying communication system provides
sufficient error handling to detect, with overwhelm-
ing probability, all corrupted packets. One way to
achieve this is by having each protocol packet ac-
companied by its hash. Furthermore, timeouts and
retransmissions are likewise handled by the commu-
nication system with the assumption that a packet
eventually gets through.

We note that, even if the user is disconnected from
the network1 after sending a signature request to
its SEM and before receiving a reply, the user will
eventually obtain the correct reply (if the request
ever reached the SEM) whenever the communication
channel is re-established. Specifically, as described in
the next section, a SEM always replies with the last
signature it computed for a given user.

5 SAS Description

We now turn to the detailed protocol description.

5.1 Setup

To become a SAS signer, Alice first generates a se-
cret quantity SK0

A randomly chosen from the range
of hA(). Starting with this value, Alice computes a
hash-chain:

{ SK0
A, SK1

A, . . . SKn−1
A , SKn

A } where

SKj
A = hj

A(SK0
A) = hA(SKj−1

A ) for 1 ≤ j ≤ n

The last value, SKn
A, is referred to as Alice’s SAS

root key. It subsequently enables Alice to produce
(n− 1) SAS signatures.

Each SEM is assumed to have a secret/public RSA
key-pair (SKsem, PKsem) of sufficient length. (We
use the notation [x]sem to denote SEM’s signature on
string x). Each CA also has its own key-pair much
like any traditional CA. In addition to its usual role

1This can happen if a wireless device, e.g., a cell phone, is
momentarily out of range of any base station.

of issuing and revoking certificates a CA also main-
tains a mapping between users and SEMs that serve
them. This relationship is many to one, i.e., a SEM
serves a multitude of users. Exactly how many de-
pends on many factors, such as: SEM’s hardware
platform, average user signature request frequency,
network characteristics, etc. We expect the number
and placement of SEMs in an organizational network
to closely resemble that of OCSP Validation Agents
(VAs) [1].

In order to obtain a SAS certificate CertA, Alice
composes a certificate request and submits it to the
CA via some (usually off-line) channel. Alice’s SAS
certificate has, for the most part, the same format
as any other public key certificate; it includes values
such as the holder’s distinguished name, organiza-
tional data, expiration/validity dates, serial number,
public token key, and so forth. Additionally, a SAS
certificate contains two other fields:

1. Maximum number of signatures n that the en-
closed public key can be used to generate, and

2. Distinguished name and certificate serial number
of the SEM serving the certificate holder.

Once issued, Alice’s SAS certificate CertA can be
made publicly available via a directory service such
as LDAP [15].

5.2 SAS Signature Protocol

The protocol proceeds as follows. (In the initial
protocol run the signature counter i = n − 1; it
is decremented after each run. This counter is
maintained by both SEM and Alice.)

Step 1. Alice starts by sending a request containing:
[Alice,m, i, SKi

A] to its assigned SEM. If Alice does
not wish to reveal the message to the SEM, m can be
replaced with a suitable keyed (or, more accurately,
randomized) hash such as the well-known HMAC
[14]. (In that case, Alice would send HMACr(m)
where r is a one-time random value used a key in the
HMAC computation.)

Alice may also (optionally) enclose her SAS
certificate.

Step 2. Having received Alice’s request, SEM
obtains CertA (either from the request or from
local storage) and checks its status. If revoked,
SEM replies with an error message and halts the
protocol. Otherwise, SEM compares the signature
index in the request to its own signature counter. In
case of a mismatch, SEM replies to Alice with the
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lowest-numbered half-signature produced in the last
protocol run and aborts.

Next, SEM proceeds to verify the received public key
(SKi

A) based on Alice’s SAS root key contained in
the certificate. (If this is Alice’s initial request, the
signature counter is initialized to Having received
Alice’s request, SEM obtains CertA (either from the
request or from local storage) and checks its status.
If revoked, SEM replies with an error message and
halts the protocol. Otherwise, SEM compares the
signature index in the request to its own signature
counter. In case of a mismatch, SEM replies to Alice
with the lowest-numbered half-signature produced
in the last protocol run and aborts. Specifically,
SEM checks that hn−i

A (SKi
A) = SKn

A. In case of
a mismatch, SEM replies to Alice with the last
recorded half-signature and aborts the protocol.

Next, SEM signs the requested message with its
private key to produce: [CertA,m, i, SKi

A]SEM .
Other attributes may also be included in SEM’s
half-signature, e.g., a timestamp. SEM decrements
Alice’s signature counter, records the half-signature
and returns the latter to Alice.

In the above, SEM assures that – for a given SAS
certificate – exactly one signature is created for each
[i, SKi

A] tuple. We refer to this property as the SAS
Invariant.

Step 3. Alice (who is assumed to be in possession
of SEM’s certificate at all times) verifies SEM’s half-
signature, records it and decrements her signature
counter. If SEM’s half-signature fails verification
or its attributes are wrong (e.g., it signs a different
message than m or includes an incorrect signature
counter j 6= i), Alice aborts the protocol and
concludes that a hostile attack has occurred.2 (See
Section 7 below.)

Finally, Alice’s SAS signature on message m has the
following format:

SIGi = [CertA,m, i, SKi
A]SEM , SKi−1

A

The second part, namely SKi−1
A , is Alice’s half-

signature. As mentioned earlier, it is actually a
one-time signature: hA(SKi−1

A ) = SKi
A.

Note that Alice must use her one-time keys in strict
sequence. In particular, Alice must not request a

2Our communication channel assumption rules out non-
malicious packets errors.

SEM half-signature using SKi−1
A unless, in the last

protocol run, she obtained SEM’s half-signature con-
taining SKi

A.

5.3 SAS Signature Verification

SAS signature verification comes in two flavors: light
and full. The particular choice depends on the veri-
fier’s trust model. Recall that the philosophy of SAS
is based on much greater (yet not unconditional) trust
placed in a SEM than in a regular user. If a verifier
(Bob) fully subscribes to this, i.e., trusts a SEM more
than Alice, he can chose light verification. Otherwise,
if Bob is equally suspicious of SEMs as of ordinary
users, he can choose full verification.

Light verification involves the following steps:

1. Obtain and verify3 CertSEM

2. Verify SEM’s RSA half-signature:
[CertA,m, i, SKi

A]SEM

3. Verify Alice’s half-signature: hA(SKi−1
A ) ?=

SKi
A

Full verification requires, in addition:

4. Verify CertA

5. Check that i < n

6. Verify Alice’s SAS root key: hn−i
A (SKi

A) ?= SKn
A

Note that light verification does not involve check-
ing Alice’s SAS certificate. Although this may seem
counter-intuitive, we claim that SAS signature for-
mat (actually SEM’s half-signature) already includes
CertA as a signed attribute. Therefore, for a verifier
who trusts the SEM, step 2 above implicitly verifies
CertA.

It is easy to see that, owing to the trusted nature
of a SEM and the SAS Invariant, light verification
is usually sufficient. However, if a stronger property
(such as non-repudiation) is desired, full verification
may be used.

5.4 State and Registration

As follows from the protocol description above, both
Alice and the SEM maintain state. Alice’s SAS state
amounts to the following:

CertA, CertSEM , SK0
A, i, {SIGn, ..., SIGn−i−1}

3This may be done infrequently.
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The first three values are self-explanatory. The fourth
is Alice’s current signature counter, (i), and the rest
is the list of previously generated signatures for the
same CertA. The state kept by the SEM (for each
user) is similar:

CertA, i, {SIGn, ..., SIGn−i−1}

The amount of state might seem excessive at first,
especially considering that some users might be on
small limited-storage devices. There are some opti-
mizations, however. First, we note that Alice can pe-
riodically off-load her prior signatures to some other
storage (e.g., to a workstation or a PC when the PDA
is charging). Also, it is possible to drastically re-
duce state maintenance for both users and SEMs if
successive signatures are accumulated. For example,
each SEM’s half-signature can additionally contain
the hash of the last prior SAS signature. This opti-
mization results in storage requirements comparable
to those of a traditional signature scheme.

Registration in SAS can be done either off- or on-
line. In the off-line case, SEM obtains Alice’s SAS
certificate via manual (local or remote) installation by
an administrator or by fetching it from the directory
service. To register on-line, Alice simply includes her
SAS certificate as an optional field in the initial SAS
signature request to the SEM. Before processing the
request as described above, the SEM checks if the
same certificate is already stored. If not, it installs in
the certificate database and creates a new user entry.
(See Figure 2.)

Figure 2: SEM architecture

6 Analysis

We now consider the efficiency and security aspects
of the SAS signature method.

6.1 Efficiency

The cost of our signature protocol can be broken up
as follows:

1. Network overhead: round-trip delay between Al-
ice and SEM

2. SEM computation: signature computation plus
other overhead (including hash verification of
user’s one-time public key, database processing,
etc.)

3. User computation: verification of the SEM half-
signature and other (commitment to storage)
overhead.

Clearly, (1) and (3) are extra steps as compared with
a traditional signature method. The extra cost of
light signature verification (referring to the steps in
the previous section) is only in Step 3 which consists
of a single hash operation. Full verification costs an
additional certificate validation (Step 4) as well as
(n− i) hash operations in Step 5.

6.2 Security Analysis

We claim that the SAS signature method achieves the
same security level as a traditional digital signature
scheme if SAS signature and verification protocols are
executed correctly. Due to space limitations, we only
present an informal security analysis.

To forge a SAS signature, an adversary can at-
tempt to:

TYPE 1: forge a SEM’s half-signature (i.e., an RSA
signature) or

TYPE 2: find a quantity SK∗
A such that

H(SK∗
A) = SKi

A. Recall that SKi
A is in-

cluded in SEM’s half-signature.

Clearly, a TYPE 1 attack is an attack on the un-
derlying signature scheme, i.e., RSA, and, as such, is
not specific to the SAS method. Therefore, we only
consider TYPE 2 attacks. However, finding SK∗

A

implies a successful attack on either the collision-
resistance or the one-wayness property of the under-
lying hash function hA(). Even we were to allow
the possibility of the adversary mounting a success-
ful TYPE 2 attack, the scheme remains secure if full
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verification is used. (Recall that full verification in-
cludes not only checking H(SK∗

A) ?= SKi
A but also

hn−i
A (SKi

A) ?= SKn
A.)

We observe that, in any practical digital signature
scheme, a collision-resistant one-way hash function
is first applied to the message in order to produce
a fixed-length digest which is then signed. Hence,
a successful TYPE 2 attack on a SAS signature is,
at the same time, an attack on the digital signature
scheme.

6.3 Disputes

In case of a dispute between a signer (Alice) and a
verifier (Bob), the latter submits the disputed SAS
signature to an unbiased arbitrator who starts by ver-
ifying the following:

• Alice’s and SEM’s certificates are valid and cer-
tified by a CA.

• SEM’s half-signature is valid.

• Alice’s one-time key is a hash pre-image of the
value in SEM’s half-signature.

• The SAS root key in CertA can be derived from
the one-time public key by repeated hashing.

This is essentially the full SAS signature verification
as described earlier. If any of the above steps fails,
the arbitrator rules in Alice’s favor. Otherwise, Bob
wins the dispute.

Assuming the above procedure succeeds, Alice is
asked to produce a different SAS signature with the
same one-time key (i.e., same one-time signature). If
Alice can come up with such a signature (meaning
that the message signed is different from the one in
the disputed signature), the arbitrator concludes that
Alice’s SEM cheated or was compromised. This con-
clusion is based on the apparent violation of the SAS
Invariant. If Alice fails to produce a different signa-
ture, the arbitrator concludes that Alice attempted
to cheat.

7 Denial of Service

The SAS signature protocol, unlike traditional signa-
ture schemes, involves multiple parties and commu-
nication. It is therefore subject to Denial of Service
(DoS) attacks. Since we assume that the communi-
cation channel is reliable (cf. Section 4.3), only hos-
tile DoS attacks are of interest. Also, our channel
assumption states that all messages eventually get

through; thus, attacks on the communication media
are ruled out.

There are two types of DoS attacks: user attacks
and SEM attacks. The purpose of a user attack is
to deny service to a particular user whereas the pur-
pose of a SEM attack is to deny service to all users
served by a SEM. User attacks can be further divided
into request and reply attacks. Request attacks in-
volves modifying (or injecting) a user’s signature re-
quest and a reply attack – modifying a SEM’s reply.

7.1 User Attacks

Suppose that an adversary (Eve) intercepts the sig-
nature request and mounts a request attack. In this
case, SEM receives a request that is perfectly legiti-
mate (well-formed) from its point of view. It proceeds
to sign it and send the signed reply back to Alice.
Clearly, Alice discards the reply because it contains
a signature for a different message. If Eve prevents
the reply from reaching Alice, she gains no advantage
since, as explained above, forging a signature requires
Eve to come up with a one-time public key which she
cannot do without breaking the hash function. Even
if the reply does not arrive immediately, according to
our communication assumption, it eventually reaches
Alice who promptly detects an attack.

A slight variation on the above occurs when Eve
has in her possession the last SAS signature gener-
ated by Alice. In this case, Eve can contact Alice’s
SEM with a well-formed request and without Alice’s
knowledge, i.e., Alice is off-line. However, this attack
results in the same outcome as the above. This is be-
cause, eventually, Alice requests a new signature and
SEM replies with the last (signed) reply. Alice, once
again, detects an attack.

We note that these attacks can be prevented: one
way to do so is for Alice not to reveal her i-th signa-
ture until (i − 1)-st signature is computed. In other
words, every other signature would be used strictly
for this purpose. Then, if we suppose that Alice-SEM
communication is private, revealing SIGi to Bob (or
Eve) is safe since a successful request to Alice’s SEM
would require knowledge of SKi−1 which Alice does
not reveal until the next signature is requested. Yet
another solution is to use a second, different hash
chain for the sole purpose to authenticate Alice’s re-
quests to the SEM.

All in all, request attacks, while possible, are de-
tected by the SAS signature protocol due to its “fail-
stop” property: any manipulation of the signature
request is detected by the user who can then invali-
date its own certificate.
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User reply attacks are comparatively less effective.
If Eve modifies SEM’s reply, short of forging an RSA
signature, Alice detects that the reply is not what she
expected and continues re-transmitting her signature
request.

7.2 SEM Attacks

By virtue of serving a multitude of regular users, a
SEM is a natural DoS attack target. This is not
unique to SAS. For instance, it is easy to mount an
effective DoS attack against an OCSP [1] (or even
worse, a TSP [16]) server. It suffices for the adversary
to flood the victim server with well-formed requests,
i.e., requests for which the server is “authoritative” in
OCSP. Since the server must digitally sign all replies,
it will slowly grind to a halt.

In SAS, it is appreciably more difficult for the ad-
versary to launch this type of an attack. The stateful
nature of the SEM requires each signature request to
be well-formed: it must contain the expected value
of the current one-time public-key, i.e., the pre-image
of the previously used public-key. All other requests
are promptly discarded.

Therefore, in order to force the SEM to perform
any heavy-weight tasks (of which signing is really the
only one), the adversary must mount simultaneous
user request attacks on as many users as possible thus
hoping to flood the SEM. However, even if this were
possible, the attack would quickly subside since the
SEM will only perform a single signature operation
per user before demanding to see a pre-image (next
one-time public key). As we already established, find-
ing the pre-image of the last signed one-time public
key is computationally infeasible.

7.3 Loss of State

As SAS requires a non-trivial amount of state to be
maintained by both users and SEMs, we need to con-
sider the potential disaster scenarios that result in a
loss of state.

Suppose that Alice looses all records of her prior
signatures along with the signature counter. We fur-
ther assume that she still has possession of her SAS
certificate and the secret hash chain seed. Since these
two values are fairly long-term, it is reasonable for Al-
ice to store them in more permanent storage. Because
of the “amnesia”, Alice will attempt to obtain the ini-
tial signature from the SEM. Since SEM has retained
all relevant state, it will reply with the last half-
signature (including SEM’s signature counter) gener-
ated for Alice’s SAS certificate. Once she verifies the
reply, Alice will realize her loss of state and resort to

off-line means. However, if a malicious SEM is aware
of Alice’s loss of state, it can use this to its advantage
by forging with impunity Alice’s signatures.

If Alice looses her entire storage, including the SAS
certificate, the consequences are not particularly dire.
The SEM will simply keep state of Alice’s “orphan”
certificate until it eventually expires.

Any loss of SEM’s state is much more serious. Most
importantly, if the SEM looses all state pertaining to
Alice’s SAS certificate, the SAS Invariant property
can no longer be guaranteed. (Consider, for example,
malicious Alice re-establishing state of her SAS cer-
tificate on the SEM and then obtaining n signatures
with the same hash chain.)

7.4 SEM Compromise

SEM compromise is clearly the greatest risk in SAS.
The adversary who gains control of a SEM can
un-revoke or refuse to revoke SAS user certificates.
Moreover, it becomes possible to produce fraudulent
user signatures: since state is kept of all prior SAS
signatures (corresponding to active SAS certificates),
the adversary can sign on behalf of Alice for each
(SKi

A, SKi−1
A ) pair found in SEM’s storage.

Nonetheless, a defrauded SEM user can still have
recourse if she faithfully keeps state of all prior SAS
signatures. Referring to the SAS dispute resolution
procedure, when an arbitrator is presented with two
distinct and verifiable SAS signatures for the same
(SKi

A, SKi−1
A ) pair, he concludes that the SEM has

attempted to cheat.

7.5 Suicide in SAS

In order to provide rapid and effective response to
potential attacks, SAS includes a way for the user
to “self-revoke” a SAS certificate. This is easily ob-
tained by placing a new value (X.509 extension) in
the SAS certificate. This value, referred to as the
“suicide hash”, is the hash of a randomly selected
secret quantity generated by Alice when composing
her certificate request. To self-revoke the certificate,
Alice simply communicates the corresponding suicide
pre-image to the SEM and the CA. As a result, the
former simply stops honoring any further signature
requests (pertaining to Alice’s certificate) while the
latter places a reference to the said certificate on the
next CRL.

A similar technique has been suggested (with the
value revealed by the CA instead) by Micali [17] as
part of a proposal for an efficient revocation scheme.
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8 Implementation and Experi-
ments

To better understand the implications of using SAS
and to obtain valuable experimental and practical
data, we implemented the SAS scheme, first as a
limping proof-of-concept prototype and, later, as a
fully functional and publicly available package.

The implementation, for the most part, follows the
protocol as presented in Section 5. The SAS certifi-
cate issuance is done strictly off-line: all users obtain
their SAS certificates from the CA as described in
Section 5.1. The newly issued certificates are either
transferred to SEM off-line or piggybacked onto each
user’s initial SAS signature request. We limit our im-
plementation discussion owing to space limitations;
further details, including the SAS signature and SAS
certificate formats can be found in Appendix A.

8.1 SAS Application Example: Eu-
dora Plug-in

To demonstrate the ease and utility of the SAS sig-
natures, we developed a plug-in (on top of the SAS
user library [18]) for the popular Eudora [19] mailer.

When composing email, the sender simply clicks on
the plug-in button. When ready to send, the plug-
in reads the user’s SAS certificate and extracts the
SEM’s address. It then communicates with the SEM
to obtain a SAS signature on the email message. The
resulting signed email is verified automatically by the
Eudora plug-in on the receiver’s side. Even if the re-
ceiver does not use Eudora, the SAS-signed email can
be verified by any S/MIME capable email client such
as Netscape Messenger or Microsoft Outlook. The
verification, however, requires the receiver (verifier)
to install a stand-alone SAS email verifier program.
This program is registered as the viewer for the new
MIME type (‘‘x.SAS-signature’’).

Figure 3 shows a screen snapshot of the Eudora
message composition window when the user is ready
to send a signed email. It is essentially the same as
the normal Eudora screen except for the small SAS
button at the toolbar along the top of the window.
Figure 4 depicts a screen snapshot of the Eudora
mailer showing a SAS-signed email message being re-
ceived. The user is presented with a signature icon on
the message screen; clicking on it causes the mailer to
invoke the plug-in’s verification function the output
of which is displayed in the Figure 5.

To conserve space we omit the depiction of a user
trying to sign email with a revoked certificate. In this
case, the plug-in displays an error message informing

Figure 3: Snapshot of signer plug-in

Figure 4: Verifier plug-in: signed email

the user of his certificate’s demise. Further details on
the Eudora plug-in can be found in Appendix A.

8.2 Experimental Results

As emphasized in the introduction, one of the main
goals of SAS is to off-load the bulk of signature com-
putation from the weak user to the powerful SEM. To
validate the goals and experiment with the SAS im-
plementation, we ran a number of tests with various
hardware platforms and different RSA key sizes.

All experiments were conducted over a 100 Mbit
Ethernet LAN in a lab setting with little, if any, ex-
traneous network traffic. All test machines ran Linux
version 2.2 with all non-essential services turned off.
The hardware platforms ranged from a measly 233-
MHz PI (Pentium I) to a respectable 1.2-GHz PIV
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Figure 5: Verifier plug-in: verification

(Pentium IV). Note that we selected the lowest-end
platform conservatively: only very high-end PDAs
and palmtops approach 200-MHz processor speed;
most are in the sub-100Mhz range. Our choice of the
SEM platform is similarly conservative: a 933-MHz
PIII. (At the time of this writing, 1.7-GHz platforms
are available and affordable.)

Processor Key length (bits)
1024 2048 4096 8192

PI-233 MHz 40.3 252.7 1741.7 12,490.0
PIII-500 MHz 14.6 85.6 562.8 3,873.3
PIII-700 MHz 9.2 55.7 377.8 2,617.5
PIII-933 MHz 7.3 43.9 294.7 2,052.0
PIV-1.2 GHz 9.3 58.7 401.2 2,835.0

Table 1: Plain RSA signature timings (ms)

First, we present in Table 8.2 plain RSA timings
conducted with OpenSSL on the five hardware plat-
forms. Table 8.2 illustrates the SAS timing measure-
ments on the four user platforms with the SEM dae-
mon running on a 933-MHz PIII. All SAS timings
include network transmission time as well as SEM
and user processing times. Finally, Table 8.2 shows
the LAN round-trip communication delay between
the user and the SEM, for different key sizes. The
size of the signature request is determined by the di-
gest size of the hash function, whereas, SEM’s replies
vary from roughly 164 bytes for 1024-bit RSA key to
around 1, 060 bytes for an 8K-bit RSA key.

We purposely used fairly conservative platforms for
both the SEM and test users. The slowest user plat-

form is a 233-MHz Pentium I laptop which is signif-
icantly faster than a typical PDA or a cell phone.
The motivation was to show that, even a relatively
fast user CPU, the speedup from SAS is appreciable.
Clearly, a more realistic scenario would involve, for
example, a 60- to 100-MhZ PDA as the user platform
and a 1.7- to 2-GhZ PIV as a SEM.

As is evident from Table 8.2, all four user platforms
experience noticeable speed-up as a result of using
SAS, as compared with plain RSA. It is not surpris-
ing that the two low-end clients (233-MHz and 500-
MHz) obtain a factor 4 to 6 speed-up depending on
the key size. It is interesting, however, that the seem-
ingly most powerful client platform (1.2-GHz PIV)
also experiences a small speed-up. However, looking
at Table 8.2, it becomes clear that the 1.2-GHz PIV
is not the fastest platform after all. The explanation
for this oddity rests with the chip maker.

Processor Key length (bits)
1024 2048 4096 8192

PI-233 MHz 13.3 52.4 322.5 2,143.4
PIII-500 MHz 9.1 46.3 302.0 2,070.2
PIII-700 MHz 8.5 45.1 299.0 2,059.6
PIV-1.2 GHz 8.5 45.4 299.0 2,061.0

Table 2: SAS signature timings (ms)

To summarize, as Tables 8.2 and 8.2 illustrate, de-
spite large variances in the four clients’ CPU speeds,
the difference in SAS sign time is very small. More-
over, the SAS sign time is only slightly higher than
the corresponding value for the SEM (PIII-933 MHz)
in Table 8.2, meaning that – communication delay
aside – a SAS client can sign almost as fast as the
SEM. The reason is that, to obtain a SAS signature, a
user’s cryptographic computation (which dominates
the overall time) amounts to message hashing and
signature verification. Hashing is almost negligible
as compared to public key operations. RSA signa-
ture verification is also quite cheap in comparison to
signing since we use small public exponents.

Processor Key length (bits)
1024 2048 4096 8192

PI-233 MHz 0.6 0.7 1.1 1.7
PIII-500 MHz 0.4 0.5 0.8 1.2
PIII-700 MHz 0.1 0.2 0.2 0.3
PIV-1.2 GHz 0.4 0.5 0.8 1.2

Table 3: Network round-trip delay (ms)
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9 Benefits and Drawbacks

In summary, the SAS signature scheme offers several
important benefits as described below: Efficient
Signatures. As follows from the protocol descrip-
tion and our experimental results, the SAS signature
scheme significantly speeds up signature computa-
tion for slow, resource-limited devices. Even where
speed-up is not as clearly evident (e.g., with small
key sizes), SAS signatures conserve CPU resources
and, consequently, power, for battery-operated
devices.

Fast revocation. To revoke a SAS certificate, it
is sufficient for the CA to communicate to the cor-
rect SEM. This can be achieved, for example, with
CA simply issuing a new CRL and sending it to the
SEM. Thereafter, the SEM will no longer accept SAS
signature requests for the revoked certificate.
We remark that, with traditional signature schemes,
the user who suspects that his key has been com-
promised can ask the CA to revoke the certificate
binding this key to the user. However, the adversary
can continue ad infinitum to use the compromised
key and the verification burden is placed on all
potential verifiers who must have access to the latest
CRL. With SAS, once the SEM is notified of a
certificate’s revocation, the adversary is no longer
able to interact with the SEM to obtain signatures.
Hence, potential compromise damage is severely
reduced.

More secure signatures. Since only a SEM
performs real RSA public key operations (key gen-
eration, signature computation), it can do so with
stronger RSA keys than would otherwise be used by
the users. Indeed, a small PDA-like device is much
less likely to generate high-quality (or sufficiently
long) RSA factors (p, q) and key-pairs than a much
more powerful and sophisticated SEM.

Signature Causality. Total order can be imposed
over all SAS signatures produced by a given user.
This is a direct consequence of the hash chain
construction and the SAS Invariant. In other
words, total ordering can be performed using the
monotonically increasing signature counter included
in each SAS signature.

Dispute Resolution. Signature Causality can
be used to provide unambiguous dispute resolution
in case of private key compromise. Recall that
the compromise of a private key in a traditional

signature scheme results in chaos. In particular, all
prior signatures become worthless unless the use of
a secure timestamping service is explicitly mandated
for all signer and signatures. In SAS, once the time
of compromise is established, signatures can be easily
sorted into pre- and post-revocation piles.

Attack Detection. As discussed in Section 7,
an adversary can succeed in obtaining a single
fraudulent half-signature (not a full SAS signature)
by substituting a message of its own choosing
in the user’s signature request. This essentially
closes the door for the adversary since it is unable
to obtain further service (short of inverting the
hash function). The real user will detect that
an attacks has taken place the next time when it
tries to run the SAS signature protocol with its SEM.

Limited Damage. Even if the entire SAS hash
chain is compromised (i.e., an adversary obtains
the seed of the hash chain), the damage is con-
tained since the adversary can generate at most n
signatures. Furthermore, a user whose hash chain
is compromised will detect the compromise the
very next time she attempts to contact the SEM.
(This is because the SEM will reply with its last
half-signature ostensibly computed for the requesting
user.)

Alas, the SAS scheme has some notable drawbacks
as well:
• Each SEM is a single point of failure and a
performance bottleneck for the users it serves.

• As discussed in Section 7, a SEM signs (with RSA,
to produce its half-signature) a response to every
well-formed signature request. This feature can be
exploited by an adversary in order to mount a DoS
attack. However, even the best attack can succeed
in making a SEM sign at most once for each user it
serves. Of course, an adversary can still flood any
SEM with malformed requests which can certainly
render a SEM unavailable to legitimate users.

• Unlike other mediated or multi-party signature
methods (such as mRSA or 2-party DSA), SAS
signatures are not compatible with any other basic
signature type. In other words, SAS signatures are
not transparent to verifiers. Therefore, all potential
verifiers must avail themselves of at least the SAS
verification method.

• It is possible, but neither easy nor elegant, for
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a user to switch among different SEMs in SAS.
One way is to have multiple SAS certificates; one
for a distinct SEM. Another way is to use on-line
hand-over of a SAS certificate among two SEMs.
Neither solution is particularly attractive due to
the difficulty of replication of a statfule server. (In
mRSA [4], for example, a user can swich among
SEMs transparently, where SEM is stateless. )

• SAS involves on-going state retention for regular
users and SEMs. This burden is particularly heavy
for SEMs (users can off-load their state periodically)
since they must keep complete signature histories for
all users served.
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Appendix A: SAS Implementa-
tion Details

A.1 SAS Signature Format

The well-known PKCS#7 [20] standard defines a gen-
eral cryptographic message syntax for digital signa-
tures. In it, SignerInfor includes an optional set
of signed attributes as well as an optional set of un-
signed attributes. This flexibility allows us to easily
extend the PKCS#7 signature syntax to accommo-
date SAS signatures. This is because a SAS signature
can be viewed as a regular public key signature with
an appended extra value, i.e., the hash pre-image.

The format changes are only a few new
requirements for authenticatedAttributes and

unauthenticatedAttributes of the SignerInfor
field. In a SAS signature, SignerInfor is the same
as in plain PKCS#7, except:

• authenticatedAttributes:
this field is not OPTIONAL, but MANDA-
TORY. It must contain, at a minimum, two more
attributes aside from those set in PKCS#7:

– SAS issuer sn: IssuerAndSerialNumber –
specifies the SAS client’s certificate by is-
suer name and issuer-specific serial number

– SAS signed token index: INTEGER –
specifies the SAS client signed one-time sig-
nature index (counter)

– SAS signed token value: OCTET STRING
– specifies the SAS client signed one-time
public key

Note that PKCS#7 requires
issuerAndSerialNumber in SignerInfo to
identify signer’s key. In SAS, this corresponds
to SEM’s key. Therefore, we require another
field SAS issuer sn to identify the user’s SAS
certificate containing the SAS root key. The
signed token is not placed into ContentInfo so
that the message digest handling is the same
as with any other public key signature type.
Moreover, the token can be extracted from
PKCS#7 independently, if necessary.

• unauthenticatedAttributes:
this field is not OPTIONAL, but MANDA-
TORY. It must contain:

– SAS preimage token value: OCTET
STRING – specifies the SAS user’s one-
time hash pre-image of the signed token
specified in SAS signedtoken value. This
attribute is unsigned. It is inserted by
the user when the SEM’s half-signature is
received and verified.

Because of format compatibility, a SAS signature can
be shipped as a normal PKCS#7 signature. How-
ever, the verification method is obviously different.
The normal PKCS#7 verification routines can only
verify the SEM half-signature (i.e., RSA public key
signature).

The extra step in (light) verification of
a SAS signature is the comparison of the
hash of SAS preimage token value and the
SAS signed token value assuming light verification
is used. Otherwise, as described above, the verifier
checks the validity of SAS signed token value and

13



SAS signed token index by computing the iterative
hash and comparing the result with the SAS root
key in the signer’s SAS certificate.

The fact that two parties participate in signing
result in a semantic issue when SAS signatures are
used in conjunction with S/MIME. Most S/MIME
applications enforce a policy requiring the sender of
the message (as shown in the RFC822 From: field)
to match the e-mail address in the signer certificate.
Unfortunately, in SAS, the sender is the holder of the
SAS certificate, e.g., alice@wonderland.com. Whereas,
the “signer” is the SEM, e.g., sem@wonderland.com.
Therefore, a SAS verifier should be aware of the pres-
ence of the unsigned attribute and use the proper
email address in comparison.

A.2 SAS Certificate

To support SAS attributes, we extended X509v3 han-
dling [21] in the popular Openssl library [22]. In ad-
dition to the usual X509v3 fields, a SAS certificate
also certifies the following:

• SASHashType: DigestAlgorithmIdentifier –
identifies the hash algorithm used in generating
the hash chain;

• SASPublicKeyIdentifier: OCTET STRING –
SAS root key in the hash-chain.

• SASPublicKeyPara: INTEGER – length of the
hash-chain.

• SASServerName: STRING – SEM’s host name.
This field indicates the location of SEM and has
no security meaning.

• SASSerialNumber: INTEGER – SEM’s certificate
serial number. (Here it is assumed that the SEM
and the user share the same CA). Uniquely iden-
tifies SEM’s certificate and the corresponding
public key.

A.3 Eudora Plug-in Details

We implemented the SAS plug-in as two email trans-
lators defined in Eudora’s plug-in API [19]. Specif-
ically, SAS signing is a Q4-Transmission translator
and SAS verification is an On-Display translator.

SAS signing translator is invoked when Eudora
is ready to send email and is fed with the entire
email message, including its MIME header. When
SAS signature protocol terminates, the whole SAS
signature in PKCS#7 format is appended to the
email body as an attachment with the MIME sub-
type ‘‘x.SAS-signature’’.

SAS verification translator is called when Eudora
is about to display a SAS-signed email. As in tradi-
tional signature verification, a certificate chain must
be at hand. Our plug-in allows users to specify the
root CA certificate, assuming, of course, that the
SEM and the SAS client share the same certificate
issuer. It is easy to build a chain by extracting SEM
and client’s certificate from the PKCS#7 signature.
In this implementation, we chose not to adopt opaque
signing. If the signature is invalid, an error message
window is popped up while the original email body
is still displayed.

Since SAS signature verification is different from
normal S/MIME, non-Eudora applications, like
Netscape or Outlook, cannot verify it without a spe-
cial verification program. We provide such a stand-
alone

Appendix B: Related Work on
Certificate Revocation

• CRLs and ∆-CRLs: Certificate Revocation Lists
are the most common way to handle certificate revo-
cation. The Validation Authority (VA) periodically
posts a signed list of all revoked certificates. These
lists are placed on designated servers called CRL dis-
tribution points. Since these lists can get quite long,
a VA may alternatively post a signed ∆-CRL which
only contains the list of revoked certificates since the
last CRL was issued. When verifying a signature on
a message, the verifier checks that, at the time that
the signature was issued, the signer’s certificate was
not on the CRL.
• OCSP: The Online Certificate Status Protocol
(OCSP) [1] improves on CRLs by avoiding the trans-
mission of long CRLs to every user and by providing
more timely revocation information. The VA sends
back a signed response indicating whether the spec-
ified certificate is currently revoked. When verifying
a signature, the verifier sends an OCSP (certificate
status request) query to the VA to check if the en-
closed certificate is currently valid. The VA answers
with a signed response indicating the certificate’s re-
vocation status. Note that OCSP prevents one from
implementing stronger semantics: it is impossible to
ask an OCSP VA whether a certificate was valid at
some time in the past.
• Certificate Revocation Trees: Kocher [23] sug-
gested an improvement over OCSP. Since the VA is
a global service, it must be sufficiently replicated
to handle the load of all validation queries. This
means the VA’s signing key must be replicated across
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many servers which is either insecure or expensive
(VA servers typically use tamper-resistance to pro-
tect the VA’s signing key). Kocher’s idea is to have
a single highly secure VA periodically post a signed
CRL-like data structure to many insecure VA servers.
Users then query these insecure VA servers. The data
structure (CRT) proposed by Kocher is a hash tree
where the leaves are the currently revoked certificates
sorted by serial number The root of the hash tree is
signed by the VA.

A user wishing to validate a certificate issues a
query to the closest VA server. Any insecure VA
can produce a convincing proof that the certificate
is (or is not) on the CRT. If n certificates are cur-
rently revoked, the length of the proof is O(log n). In
contrast, the length of the validity proof in OCSP is
O(1).
• Skip-lists and 2-3 trees: One problem with
CRTs is that, every time a certificate is revoked, the
entire CRT must be recomputed and distributed in its
entirety to the various VA servers. A data structure
allowing for dynamic updates would solve this prob-
lem since the secure VA would only need to send small
updates to the data structure along with a signature
on the new root of the structure. Both 2-3 trees pro-
posed by Naor and Nissim [24] and skip-lists proposed
by Goodrich [25] are natural data structures for this
purpose. Additional data structures were proposed
in [26]. When a total of n certificates are already re-
voked and k new certificates must be revoked during
the current time period, the size of the update mes-
sage to the VA servers is O(k log n) (as opposed to
O(n) with CRT’s). The proof of certificate’s validity
is O(log n), same as with CRTs.
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