
1

Leak-free Group Signatures with Immediate
Revocation

Xuhua Ding, Gene Tsudik, and Shouhuai Xu
Department of Information and Computer Science

University of California, Irvine
Email: {xhding,gts,shxu}@ics.uci.edu

Abstract— Group signatures are an interesting and appealing
cryptographic construct with many promising potential applica-
tions. The popularity of group signatures is evident from many
recent research results that investigated precise definitions and
realizations of group signature schemes. This paper is motivated
by attractive features of group signatures, particularly, the po-
tential to serve as foundation for anonymous credential systems.
With that in mind, we re-examine the whole notion of group
signatures from a systems perspective. Somewhat surprisingly,
we discover that there are two new and hereto un-addressed
requirements: leak-freedom and immediate-revocation, that are
crucial for a large class of enterprise-centric applications. We
then propose a new group signature scheme that achieves all
identified properties. Our scheme is based on the so-called systems
architecture approach. It is appreciably more efficient than the
state-of-the-art, easy to implement and reflects the well-known
separation-of-duty principle. Another benefit of our scheme is
the obviated reliance on underlying anonymous communication
channels, which has been a requirement in all previous group
signature schemes.

I. INTRODUCTION

The concept of group signatures was introduced by Chaum
and van Heyst [CvH91] and has been claimed to have many
applications [C98], [CL01]. In the past decade, many research
efforts and results focused on seeking precise definitions
and efficient constructions of group signature schemes, or
their interactive dual, identity escrow [KP98]. Indeed, group
signatures and derivatives has been one of the most active
research topics in recent years [BMW03], [KY03]. Intuitively,
a group signature can be seen as a normal digital signature
with some extra properties:

Any verifier can establish that a valid (verifiable)
group signature was generated by a legitimate group
member, while the actual signer can only be identi-
fied by a designated entity, called a group manager.
In addition, group signatures are unlinkable and
neither a group member nor even a group manager
can mis-attribute a valid group signature.

Group signatures are a very appealing concept with many
nice features. In particular, they can be used as foundation for
anonymous credential systems in various application contexts.
With that in mind, our goal is to re-examine the notion
of group signatures from a systems perspective. Somewhat
surprisingly, we identify two additional requirements for group
signatures which are important for a large class of enterprise-
oriented applications. However, they have not been addressed

in previously proposed schemes. To this end, we construct
a practical (rather than “efficient”1) group signature scheme
that captures these new (as well as other previously identified)
requirements.

A. Background

The original and chief motivation for group signatures is to
facilitate the following functionality in a context of a group
[CvH91]: (1) only a group member can sign on behalf of the
group; (2) anyone can verify a group signature, (3) no one
(except a group manager) can discover the signer’s identity or
link/un-link multiple signatures; (4) no one can mis-attribute a
valid group signature; and (5) if necessary, a group signature
can be “opened” by the group manager in order to identify
the actual signer.

Recently, there have been many research efforts to con-
struct practical group signature schemes. Early schemes (e.g.,
[CP94]) have the drawback of either (or both) group public key
size or group signature size being linearly dependent on the
number of group members. Consequently, the complexity of
generating and verifying signatures is linear in the number of
current members. Such schemes are clearly unsuitable for large
groups. Nonetheless, the early schemes offer some advantages:
(1) some of the schemes are proven secure using some
standard cryptographic assumptions, and (2) they can easily
support dynamic membership since excluding (or adding) a
member can be achieved by the group manager manipulating
the group public key.

In order to avoid aforementioned linear complexity, Ca-
menisch and Stadler [CS97] constructed a scheme where both
the group public key and a group signature are of constant
size. (However, this was achieved at the cost of expensive
signature operations and non-standard assumptions.) Follow-
on results, e.g., [CM98] and [ACJT00], gradually improved
on both efficiency and reliance on standard cryptographic
assumptions. Despite these advances, membership revocation
has turned out to be a difficult problem. Some attempts have
been made to support revocation in group signature schemes:
Bresson and Stern [BS01], Song [S01], and Ateniese, et al.
[AST02] as well as Camenisch and Lysianskaya [CL02].

Unfortunately, even in these schemes, revocation incurs a
linear dependency on either the number of current, or the

1The term “efficient” is often used in a purely theoretical sense in
cryptographic literature.



2

total number of revoked, members. This is because of: (1)
group manager re-issuing all certificates for each revocation
interval; (2) group member proving, as part of signing, that
its certificate is not revoked; or (3) verifier checking each
group signature against the current list of revoked certificates.
The state-of-the-art is a scheme obtained by integrating the
dynamic accumulator construct of Camenisch and Lysianskaya
[CL02] (which allows for an efficient proof that a group
member is not revoked) and the “bare” group signature scheme
of [ACJT00] (which allows efficient proof of knowledge of
a secret key corresponding to a valid certificate). However,
even in [CL02], revocation is explicit and requires all parties
to be aware of most recent accumulator parameters which
can be viewed as part of the group public key. Such an
approach is neither feasible nor efficient for a large distributed
system. Moreover, the revoked group member is still be able
to compute a “correct” group signature corresponding to the
previous group setting. Consequently, besides obtaining the
latest group certificate, the verifier is obliged to determine
the signature generation time. These two burdens are widely
recognized as expensive and cumbersome.

In the past, group signature schemes were striving to satisfy
a jumble of (perhaps redundant and/or overlapping) secu-
rity requirements: unforgeability, exculpability, traceability,
coalition-resistance, no-framing, anonymity, and unlinkability
[CvH91], [CP94], [CS97], [C98], [CM98], [KP98], [AT99],
[BS01], [S01], [AST02], [CL02]. To untangle and simplify
these somewhat messy requirements, Bellare et al. [BMW03]
recently investigated “minimal” security requirements for
group signature schemes. This line of research is very impor-
tant, as is the pursuit of similar requirements for secure public
key encryption schemes [GM84], [NY90], [RS91], [DDN91]
and secure key exchange protocols. In [BMW03], Bellare, et
al. took an approach similar to the formalization of secure
encryption schemes, and showed that two security properties:
full-traceability and full-anonymity are sufficient to subsume
all of the above (seven) requirements.

B. New Requirements

In this section we argue that, in addition to full-traceability
and full-anonymity, two other requirements are needed for
many realistic group signature settings. Our rationale is based
on the observation that the group signature concept is inher-
ently application-oriented, and thus cannot simply be treated
as a primitive in the bare model.

We identify two additional requirements: leak-freedom and
immediate-revocation. We believe that both are necessary for
a large class of enterprise oriented applications. Informally,
leak-freedom means that no signer can convince anyone (ex-
cept the group manager who can identify a signer anyway) that
she indeed generated a given group signature. Also informally,
immediate-revocation means that, once a group member
is revoked, her capability of generating group signatures is
disabled immediately; ideally, without imposing extra burden
on verifiers.
Why is leak-freedom important? Consider the following
example: One of the most often cited uses of group signatures

is for an organization (commercial, government or military) to
hide its internal structure. Suppose that Alice is an employee
of a company (say, ABC) who is designated to sign purchase
orders and one of the suppliers is another company (say, XYZ).
If, via her signature, Alice can convince XYZ that she is the
signer, she could obtain kick-backs from XYZ as “gratitude”
for her supplier selection. This information leakage illustrates
potential abuse of group signatures.

We say that Alice successfully leaks a group signature
if (without revealing her private key and/or any other long-
term secrets) she can convince a verifier that she is the
signer of a given group signature. Therefore, leak-freedom
is an important property for a large class of enterprise-centric
applications.
Why is immediate-revocation important? We continue
along with the previous example: Clearly, any purchase order
signed by Alice on behalf of ABC for a supplier XYZ – using
any reasonable group signature scheme maintained by ABC –
imposes certain financial and/or legal responsibilities on ABC.
However, suppose that Alice’s private key is lost or purposely
revealed. Alternatively, Alice might be aware of her impending
lay-off or termination at ABC. In any case, Alice (or whoever
has her private key), in collusion with the crooked supplier
XYZ, has the incentive to sign unneeded purchase orders for
ABC.

This type of abuse is possible – no matter what existing
group signature revocation methods is used – unless we
assume mandatory group signature time-stamping service or
we impose a strict time limits on “depositing” all outstanding
group signatures. Neither assumption is realistic. Therefore
in practice the revoked member could issue group signatures
using previous group setting and leave the time checking
burden to the verifier. From this perspective, we consider
the existing revocation schemes do not provide immediate-
revocation. Also, more subtle attacks are conceivable given
that underlying communication is asynchronous and that there
is no easy way to differentiate between accidental and willing
compromise of a private key. Therefore, the liability for such
a “poisoned” group signature can not relegated to Alice; thus,
the company has to bear all attendant costs and responsibilities.
We remark that forward-security [A97], [BM99], [S01] does
not help here at all, since Alice could simply misbehave by
keeping copies of private keys corresponding to all previous
time periods. We also note that this problem is less grave in
traditional public key infrastructures (PKI-s) where a “poi-
soned” signature cannot be attributed to anyone other than the
public key certificate owner.

C. Our Contributions

The main contribution of this paper is twofold: First,
we identify two important aforementioned properties: leak-
freedom and immediate-revocation which are necessary for
a large class of group signature applications. Although a
similar property called appointed verifier has been previously
explored in the context of group signatures or identity escrow
[CL01a], it is strictly weaker than the leak-freedom property
we want to achieve. (See Section IV-A for the discussions on
related work including this issue.)



3

Second, given the combination of old and new security
requirements, the obvious next step is to construct a practical
scheme that achieves all of these goals. To this end, we design
a new scheme which is practical and easy to implement.
Specifically, our scheme needs only 11 exponentiations to
generate a group signature and group signature verification
is equivalent to verifying a single plain (i.e., non-group)
signature, such as RSA. This is appreciably more efficient
than the state-of-the-art [ACJT00], [CL02] which, as all other
previously proposed group signature schemes, provides neither
leak-freedom nor immediate-revocation. Our result has two
advantages over the approaches deployed in all of the previous
group signature schemes: (1) It completely releases a verifier
from the burdensome obligation of “getting” the fresh state
information of the system, even though which is well-defined;
and (2) a revoked group member is unable to compute any
“correct” group signature corresponding to previous setting.
The failure of achieving this in existing schemes, under certain
circumstances, would incur the requirement of “immediate
deposit” of group signatures (as we have highlighted before)
– another significant burden on an honest signature verifier
or receiver. Another contribution of our approach is a careful
examination of the corresponding trust model. It allows us to
relax the requirement for the underlying anonymous commu-
nication channel, which is essential in all previous schemes.

Finally, our scheme makes use of, and reflects, the well-
known security principle called separation-of-duty [CW87].
Caveat: Compared with prior non-interactive group signature
schemes, our scheme requires light-weight interaction, which
explains why it is able to satisfy all of the requirements.2

While interaction can be viewed as a notable drawback,
we claim that it is a reasonable (even small) price to pay
for additional security properties. Such trade-offs (additional
communication or interaction for stronger security guarantees)
have been explored in different contexts, e.g., [GHY85],
[K03].

D. Outline

The rest of this paper is organized as follows: the next
section provides the definition of group signatures and their
security requirements. Section III presents the new group
signature scheme. Next, Section IV discusses some extensions
and Section V concludes the paper.

II. DEFINITIONS AND PROPERTIES OF GROUP SIGNATURES

In this section we present the functionality and security
specifications of a group signature scheme. For the presen-
tation of well-known properties, we follow the recent work of
Bellare, et al. [BMW03] which showed that full-traceability
and full-anonymity are sufficient for a secure group signature
scheme.

Definition 2.1: A group signature scheme is a digital
signature scheme comprised of the following five procedures:

• SETUP: A probabilistic algorithm that, on input of a
security parameter k, outputs the group public key pkGM

2Despite the interaction, ours is not identity escrow but a true group
signature scheme.

(including all system parameters) and the group man-
ager’s secret key skGM.

• JOIN: A protocol between the group manager GM and
a user results in the user becoming a group member
U . Their common output contains the user’s unique
membership public key pkU , and perhaps some updated
information that indicates the current state of the system.
The user’s output includes a membership secret key skU .

• REVOKE: An algorithm which, on input of identity of a
group member (and perhaps her public key pkU ), outputs
some updated information that indicates the current state
of the system after revoking the membership of this group
member.

• UPDATE: An algorithm that may be triggered by a JOIN
or REVOKE. This algorithm may be run by the group
members after obtaining certain information from the
group manager GM.

• SIGN: A probabilistic algorithm that, on input of a group
public key pkGM, a user’s membership secret/public key-
pair (skU , pkU ), and a message m, outputs a group
signature δ of m.

• VERIFY: A public algorithm that, on input of a group
public key pkGM, a group signature δ and a message m,
outputs a binary value TRUE/FALSE indicating whether
δ is a valid group signature (under pkGM) of m.

• OPEN: An algorithm executed by the group manager GM
that takes as input of a message m, a group signature δ,
the group public key pkGM and the group manager’s se-
cret key skGM. It first executes VERIFY on the first three
inputs and, if the δ is valid, outputs some incontestable
evidence (e.g., a membership public key pkU and a proof)
that allows anyone to identify the actual signer.

We now summarize the well-known properties of group
signatures: correctness, full-traceability, full-anonymity, and
no-misattribution. We refer the reader to [BMW03] for a
more formal treatment of the first three.

Correctness: All signatures produced by any group member
using SIGN must be accepted by VERIFY.

Full-traceability: No subset of colluding group members (even
consisting of the entire group, and even being in possession
of the group manager’s secret key for opening signatures) can
create valid signatures that cannot be opened, or signatures
that cannot be traced back to some member of the coalition.
We remark that allowing the adversary to know the group
manager’s secret key for opening signatures is needed to
show the strength of a group signature scheme, and not for
accommodating corruption of the group manager.

More formally, we consider an adversary A that runs in two
stages, a choose stage and a forge stage. On input the group
public key and the secret of the group manager, the adversary
starts its attack by adaptively corrupting a set C ⊆ U. At the
end of the choose stage, the set C contains the identities of the
corrupted members. In the forge stage, the adversary attempts
to produce a forgery (m, δ). We say the adversary wins if δ is
a valid group signature on m, but the OPEN algorithm returns
either 1) ⊥ or 2) a valid user identity i ∈ U − C. We require
the probability that the adversary wins to be negligible.



4

Full-anonymity: It is computationally infeasible for an adver-
sary (who is not in possession of the group manager’s secret
key for opening signatures) to recover the identity of the signer
from a group signature, even if the adversary has access to the
secret keys of all group members.

To capture this, an indistinguishability requirement is im-
posed, where the adversary is given the secret keys of all
group members. The adversary also has access to the opening
oracle which, when queried with a message m and signature δ,
returns the identity of the signer. More formally, the adversary
acts in two stages: a choose stage and a guess stage. In the
choose stage, A takes as input the group members’ secret keys
as well as the group public key. Then, A queries the opening
oracle on group signatures of his choice. At the end of the
choose stage, A outputs two valid group member identities
Ui and Uj , and a message m. The adversary also outputs
some state information to be used in the guess stage. In the
guess stage, A is given the state information, and a signature
on m produced using the secret key of Ui or Uj , chosen at
random. The goal is to guess which of the two secret keys
was used. We say that a group signature scheme is fully-
anonymous if, for any polynomial-time adversary A, the
advantage of A successfully telling the identity of the actual
signer is negligible. We remark that it is sufficient to allow
the adversary to issue a request to sign its message m under
one of the two chosen identities Ui and Uj .
No-misattribution: This property has been implicitly con-
sidered in prior group signature schemes (e.g., [ACJT00]),
where the group manager typically publishes a proof that it
“correctly” attributed a signature to the actual signer. Note
that this property is not implied by full-traceability since the
GM may be dishonest only in the OPEN process. Whereas,
full-traceability assumes that the OPEN process is always
honestly done. We note that this property was ignored in
[BMW03] perhaps since in their trust model, a group manager
is assumed trusted to execute the OPEN process. In general, we
believe that this assumption is unrealistic. To illustrate this, we
continue with the previous example. Suppose Alice and Cindy
are given identical rights to sign purchase orders. Then, the
group manager (colluding with Alice or not) can claim that
a signature was generated by Cindy although it was actually
generated by Alice.

Now, we provide more precise definitions of leak-freedom
and immediate-revocation.

Leak-freedom: It is infeasible for a signer to convince anyone
that she actually signed a message, even if the said signer is
in possession of all other signers’ secrets, except the secret of
the group manager for opening signatures.3

Immediate-revocation: It is infeasible for a valid group
member revoked at time t to generate a valid signature at
any time t′ > t. This addresses all potential disputes that
might result from the underlying asynchronous communication

3Note that the same information could also be available to an adversary
targeting full-anonymity. While full-anonymity does not guarantee anything
about a signer’s inability to convince anyone that she generated a given
signature, leak-freedom does not necessarily imply full-anonymity either
(see the remark in Section III-G for a concrete example).

channel.

REMARK. On the one hand, the definition of full-anonymity
[BMW03] is very strong because this definition implies pre-
viously considered definitions where anonymity is ensured for
two incorrupt and honest group members. On the other hand,
this definition is perhaps overly restrictive because that a group
signature system, in which all the group members’ private keys
are compromised, is essentially useless. Nonetheless, we still
follow the full-anonymity in this paper.

III. OUR CONSTRUCTION

In contrast to most prior work, our construction is designed
from a systems, rather than purely cryptographic, perspective.
(Nonetheless, cryptography still plays a major role in our
construction.) The basic idea underlying our proposal is the
introduction of an entity called a mediation server MS .4

Roughly speaking, the system functions as follows: each time
a group member needs to generate a signature, she has to
somehow “identify” herself to the mediation server which then
(if the member is not revoked) produces a group signature
that can be verified using the group public key. As described
below, the mere introduction of the mediation server does not
imply that we can trivially obtain a group signature scheme
possessing all the desired properties.

The rest of this section is organized as follows. First, we
further motivate the need for a non-trivial solution. Section
III-B presents the model for our construction and Section III-
C introduces some cryptographic preliminaries used as ingre-
dients in the construction. Then, Section III-D presents the
definition of a major building block – accountable designated
verifier signatures, and Section III-E gives such a concrete
scheme. Finally, Section III-F presents our group signature
construction, and its security is analyzed in Section III-G.

A. Further Motivation

At this point, it is natural to wonder whether a practical
solution that satisfies all aforementioned requirements can be
obtained in a trivial fashion. What would be a trivial solution?
One natural approach is to make the group manager an on-
line entity and have it “filter” all group signature requests.
Each group member has an anonymous channel to the group
manager GM and, for each message to be signed, it submits
a message signed under its normal long-term signature key.
GM then “translates” each incoming signature into a signature
under its own well-known group signature key. The latter
is then released to the requesting member and treated as a
group signature. This approach is trivial, yet seemingly very
effective. All security properties (including leak-freedom and
immediate-revocation) are trivially satisfied and signature
generation/verification costs are minimal.

There are, however, several issues with the above approach.
If constant security of GM can be assured, then the trivial

4Note that this entity was not part of the definitions in Section II, since it
is unclear if it is necessary for constructing a group signature scheme with all
desirable properties. Constructing a secure leak-free group signature scheme
with the immediate-revocation feature but without a mediation server is an
open problem.



5

solution is perfect. However, having a fully-trusted on-line
entity is typically undesirable and sometimes simply unreal-
istic. Moreover, such an entity would be a single point of
failure in the sense of both security (i.e., compromise of GM
means compromise of the whole system) and anonymity (i.e., a
dishonest GM can arbitrarily “open” a group signature without
being held accountable). It essentially “puts all eggs in one
basket.” One standard way to avoid a single point of failure
is to utilize a distributed cryptosystem, which usually takes a
heavy toll in system complexity, including management, com-
putation and communication. The situation here is seemingly
more complicated because we might need some advanced
(and, therefore, less efficient) tools. To avoid such a single
point of failure while ensuring that the resulting scheme is
practical, we design a system under the guidance of the well-
known separation of duty principle. (See the seminal work of
Clark and Wilson [CW87] for necessary background.) This
approach, as will be shown below, facilitates a similar flavor
of distributed security, i.e., compromise of either GM or the
newly introduced mediation server MS , but not both, does
not necessarily imply complete compromise of the system.

B. Model

PARTICIPANTS: a set of group members U, a group manager
GM who admits group members, a mediation server MS who
revokes group members (according to GM’s directives) and a
set of signature receivers. Each participant is modeled as a
probabilistic polynomial-time interactive Turing machine.

We assume that MS maintains a secure dynamic database
which is used to record signature transactions: once a record
is stored, it cannot be deleted. Ideally, we could assume that
no adversary ever gains access to this database, unless MS
explicitly reveals some records to the adversary. To protect
against potential database compromise, transaction anonymity
can still be preserved if MS utilizes a decoy technique. This
can be done by having MS insert (n−1) well-formed dummy
transaction records for each genuine one. (Here n is the current
number of group members.)

As a more practical alternative to dummy records, we
suggest that MS encrypt the database with a public key
of GM. Although this incurs slight additional complexity,
the OPEN process that is only occasionally invoked remains
efficient. In Section IV we elaborate further on the issue
of database secrecy. Besides this database, we assume that
both MS and GM maintain a dynamic membership database
that allows both insert and delete operations but cannot be
tampered with. This is not new; similar assumptions are made
in all prior group signature schemes.

COMMUNICATION CHANNELS: the communication channel
between a group member U ∈ U and GM is not anonymous,
but authentic (which can be implemented via standard methods
and is thus ignored in the rest of this paper). The GM to
MS channel is likewise not anonymous, but authentic. In
a typical system configuration, the communication channel
between a group member U and MS is not anonymous.
Finally, the channel between MS and signature receivers is
not anonymous.

TRUST: precise specification of the trust model turns out to be
difficult mainly because of the introduction of the new party:
MS. Nevertheless, In the light of the well-known separation-
of-duty principle, we have:

1) The group manager is trusted not to introduce any illegal
(or phantom) group members. However, GM may want
to frame an honest group member.

2) MS is trusted to enforce GM’s policy, e.g., to stop
services for the revoked group members as requested by
GM and to produce group signatures only for legitimate
members. MS is also assumed not to misbehave if such
an activity will be held accountable; for example, in
the suggested system configuration where MS delivers
group signatures, MS will incur appropriate delay for
blocking trivial traffic analysis attack because a misbe-
havior here is easily held accountable. Nonetheless, MS
may want to: 1) frame an honest member into signing a
message, 2) generate a group signature without being
caught, and 3) compromise anonymity of an honest
group member (e.g., via an out-of-band channel).

SECURITY DEFINITIONS: due to the introduction of the me-
diation server MS, we need to slightly re-tool some of the
security definitions in Section II for our specific setting: full-
traceability, full-anonymity, and leak-freedom. The changes
are minimal but necessary for the sake of clarity. (The rest of
the definitions remains unchanged.)

Definition 3.1:

• Full-traceability: the only change is that the set of
colluders is allowed to include MS .

• Full-anonymity: similarly, the only change is that, in
addition, we allow the adversary to have access to the
secret key(s) of MS.

• Leak-freedom: it is infeasible for a signer to convince
anyone (except MS) she resulted in a group signature;
it is infeasible for MS to convince any other party that
certain group member resulted in a group signature.

REMARK 1. In the above definition, we implicitly assumed
that, if an adversary compromised a MS , then the adversary
is allowed to have partial control over MS (i.e., the adversary
knows MS’s key for one functionality but not for the other).
This assumption is not uncommon at all.

2. The fact that GM is able to identify the actual signer of
any given group signature is not treated as a leakage, because
GM must have this capability anyway.

C. Cryptographic Preliminaries

DIGITAL SIGNATURE SCHEMES. A digital signature scheme
SIG consists of three algorithms, namely SIG =
(Gen, Sign, Ver). On input a security parameter, a user U runs
the probabilistic Gen to obtain a pair of public and private
keys (pk, sk). On input a private key sk and a message m,
U runs Sign to produce a signature σ = SignU (m). On
input a public key pk, a message m, and a tag σ, everyone
can run Ver to check whether σ is a valid signature or not.
We require a signature scheme to be existentially unforgeable
under adaptive chosen-message attack [GMR88]. We will
utilize a secure digital signature scheme without pinning down



6

on any concrete construction, which provides us with the
flexibility when we implement the system.

DISCRETE LOGARITHM BASED CRYPTOGRAPHIC SETTING.
For specific building blocks, we need a standard setting of
discrete logarithm cryptosystem. Specifically, let Gq be the
q-order subgroup of Z

∗
p, where both p and q are prime and

p = lq + 1 such that l is co-prime to q. We will omit all the
moduli when they are clear from the context.

D. Accountable Designated Verifier Signature Schemes

This is a notion that can be viewed as an enhancement of
the private contract signature scheme in [GJM99]. Informally,
a private contract signature is a designated verifier signature
that can be converted into universally-verifiable signature by
either the signing party or a trusted third party appointed
by the signing party, whose identity and power to convert
can be verified (without interaction) by the party who is
the designated verifier. An accountable designated verifier
signature scheme, on the other hand, emphasizes on the trusted
third party’s capability of identifying an actual signer of a valid
signature.

Definition 3.2: Suppose that Pi and Pj are two participants
where i 6= j, and that T is a trusted third party. An account-
able designated verifier signature scheme, ADVS, is a tuple
of polynomial-time algorithms (ADVS-Sign, ADVS-Ver,
ADVS-Proof) defined as follows.

1) ADVS-Sign, which is executed by participant Pi on
message m for participant Pj with respect to T , out-
puts an accountable designated verifier signature δ =
ADVS-SignPi

(m,Pj , T ).
2) ADVS-Ver allows Pj to verify the validity of an input

tag δ so that
ADVS-Ver(m,Pi, Pj , T ; δ) =

{

TRUE if δ = ADVS-SignPi
(m,Pj , T )

FALSE otherwise
3) ADVS-Proof, which is executed by T on input Pi, m,

Pj , and a tag δ = ADVS-SignPi
(m,Pj , T ), produces a

proof via a Σ-protocol for the predicate SignedBy(δ, Pi)
which is TRUE if δ is produced by Pi, and FALSE
otherwise. (For practical reason, T typically turns such a
proof into a signature using the Fiat-Shamir heuristics.)

We require that if δ = ADVS-SignPi
(m,Pj , T ), then we

always have ADVS-Ver(m,Pi, Pj , T ; δ) = TRUE and T
always outputs a proof for SignedBy(δ, Pi) being TRUE.
Remark. We stress that the above definition does not cap-
ture whether Pi should be able to produce a proof for
SignedBy(δ, Pi). This capability is necessary in the context
of [GJM99], but undesirable in our application contexts (i.e.,
we want to prohibit Alice from convincing XYZ that she
did produce δ). A more precise explanation of this crucial
difference between a private contract signature and an account-
able designated verifier signature is the following: the former
only intends to prevent Pj from being able to transfer the bit
information SignedBy(δ, Pi) by whatever means, whereas the
latter intends to prevent both Pi and Pj from transferring the
bit information SignedBy(δ, Pi).

Definition 3.3: An accountable designated verifier signature
scheme is secure if the following are satisfied:

1) Unforgeability of ADVS-SignPi
(m,Pj , T ): For any

m, it is infeasible for anyone not belonging to {Pi, Pj}
to produce δ such that ADVS-Ver(m,Pi, Pj , T ; δ) =
TRUE.

2) Non-transferability of ADVS-SignPi
(m,Pj , T ): For

Pj there is a polynomial-time forgery algorithm
which, for any m, Pi, and T , outputs δ such that
ADVS-Ver(m,Pi, Pj , T ; δ) = TRUE.

3) Unforgeability of the proof for SignedBy(δ, Pi): For
any δ = ADVS-SignPi

(m,Pj , T ), it is infeasible for
anyone not belonging to {T, Pi} to produce a proof for
SignedBy(δ, Pi).

Definition 3.4: An accountable designated verifier signature
scheme is strong-secure if it, in addition to being secure,
ensures that a signing party Pi cannot produce a proof for
SignedBy(δ, Pi) with non-negligible probability, where δ =
ADVS-SignPi

(m,Pj , T ).

E. A Secure Accountable Designated Verifier Signature
Scheme

Ideally we need a strong-secure ADVS scheme because
such a scheme allows us to construct a simpler leak-free
group signature system. Unfortunately, we do not know how
to construct such a scheme and leave it as an interesting open
problem. In order to facilitate a group signature scheme that
is leak-free with immediate-revocation, we utilize a secure
ADVS scheme that is based on the ideas in [GJM99], which is,
in turn, based on [CDS94], [C95], [JSI96]. Suppose that Pl,
l ∈ {i, j}, has a pair of public and private keys 〈yl = gxl , xl〉
and that the trusted third party T has a pair of public and
private keys 〈yT = gxT , xT 〉.

For the sake of simplicity, we will use a boolean function
b() to denote the corresponding Σ-protocol. Thereby, Pi

can generate an accountable designated verifier signature on
message m for Pj by presenting a proof of a statement such
as

“X is a T -encryption of ‘i’ AND I can sign m as Pi

OR
X is a T -encryption of ‘j’ AND I can sign m as Pj”

where X is some value, and T -encryption denotes a message
encrypted via ElGamal using yT . Pi can do this because she
can perform a T -encryption of “i” to generate X , and she
can sign m by herself. Upon receiving this proof, Pj can
verify its correctness, but he cannot convince any other party
that Pi produced such a proof (or the corresponding signature
obtained using the Fiat-Shamir heuristics) because Pj can
simply fake it. We present a concrete implementation of ADVS
scheme in Appendix A with a sketched proof.

The computational complexity for the signing party is
11 exponentiations (among them 6 exponentiations can
be calculated using the implementation speedup technique
[MvOV96]); the computational complexity for the verifier is
12 exponentiations (all of them can be calculated using the
speedup technique).



7

F. Leak-free Group Signature Scheme with Immediate-
Revocation

We are finally ready to present a concrete construction.
As mentioned earlier, we use a systems approach combined
with the well-known separation-of-duty principle [CW87].
The administrative tasks are split among two entities: group
manager (GM) and mediation server (MS). The former sets
group policy, makes all decisions regarding group membership
(admission/revocation), and performs the OPEN process on
disputed group signatures. Whereas, group membership de-
cisions are enforced by MS . In other words, MS assists
GM with membership control, specifically, to satisfy the
immediate-revocation and leak-freedom requirements. In
our trust model, MS is assumed to behave honestly with
respect to its assigned tasks. However, it is not trusted to
preserve anonymity.

The introduction of an on-line entity (MS) makes our
scheme different from most prior work. In addition to satisfy-
ing the above requirements, it allows us to construct a practical
scheme where an anonymous channel is not necessary.

The basic operation of our scheme is as follows. For
message m, a group member Ui presents an accountable desig-
nated verifier signature δ = ADVS-SignUi

(m,MS,GM) to
the mediation server MS thereby requesting a plain signature
σ = SignMS(m). The latter is viewed as a group signature,
since there is a single group-wide verification key. Note that,
since GM plays the role of a trusted third party in the ADVS
scheme, it can hold the actual signer accountable. We also
note that our trust model implies that there are no issues
with fair exchange of δ = ADVS-SignUi

(m,MS,GM) for
σ = SignMS(m).

SETUP. This consists of initializing a group manager GM and
a mediation server MS .

1) The initialization of the group manager GM includes the
following:

• It chooses a security parameter κ, based on which
it chooses a discrete-logarithm based crypto-context
as specified in Section III-C. The parameter κ and
the crypto-context are thus followed system-wide by
the group members, the mediation server MS , and
the group manager GM itself.

• It specifies a set U so that each user or group
member will be assigned with a unique identity
Ui ∈ U.

• It specifies (according to κ and crypto-context) an
accountable designated verifier signature scheme
ADVS as in Section III-D. In order for GM to
play the role of the TTP in the ADVS scheme, it
chooses a pair of public and private keys 〈YGM =
gXGM , XGM〉.

• It initializes a database DBUser-GM of entry struc-
ture (user-id, user-public-key, status), where “status”
is for recording such information as “when the
group member joins or is revoked”. This database
is to keep record of all the users that have ever been
group members (i.e., in spite of the fact that a group
member may have been revoked).

2) The initialization of the mediation server MS consists
of the following:

• In order for MS to play a role in the ADVS
scheme, it chooses a pair of public and private group
membership keys 〈YMS = gXMS , XMS〉 according
to κ and crypto-context.

• It chooses a pair of keys for a normal digital
signature scheme SIG = (Gen, Sign, Ver) that is
secure against adaptive chosen-message attack (an
alternative may be that GM specifies SIG). De-
note by 〈pkMS , skMS〉 the pair of group signature
verification and generation keys, where pkMS is
publicly known. We remark that any secure signa-
ture scheme can be used as SIG. We assume that
MS knows skMS in its entirety; this is to prevent
attacks from happening because of an inappropriate
system initialization, and can be ensured by utilizing
techniques due to [XY02].

• It initializes a database DBMember-MS of entry
structure (group-member-id, group-member-public-
key).

• It initializes a database DBSig-MS of entry struc-
ture (group-member-id, ADVS-signature, normal-
signature), which will be explained below.

JOIN. Whenever the group manager GM decides to admit a
new group member, it assigns a unique identity Ui to the user.
Then, the following protocol is executed.

1) In order for Ui to play a role in the ADVS scheme,
it chooses a pair of public and private keys 〈YUi

=
gXUi , XUi

〉 according to the system-wide parameter κ
and crypto-context.

2) GM inserts an entry (Ui, YUi
, ∗) into its database

DBUser-GM where “*” stands for any information GM
wants to record, and may simply forward (Ui, YUi

) to
the mediation server MS over a communication channel
that is assumed to be authenticated and has no delay in
delivering messages.

3) After receiving (Ui, YUi
) from GM via the authenticated

communication channel, MS inserts an entry (Ui, YUi
)

into its database DBMember-MS.
REVOKE. Whenever the group manager GM decides to revoke
the membership of a group member Ui, the following protocol
is executed.

1) GM records relevant information (e.g., when member-
ship is revoked) in the “status” column corresponding to
Ui in its database DBUser-GM.

2) GM informs MS that Ui should be revoked over the
communication channel, which is assumed to be au-
thenticated and have no delay in delivering messages.
For this purpose, MS simply deletes the entry (Ui, YUi

)
from its database DBMember-MS.

UPDATE. This is a dummy process in our scheme, but may be
important in other schemes (e.g., a signature receiver may need
to obtain the current system status from the group manager).

SIGN. Whenever a group member Ui wants to generate a
group signature on a message m, the following protocol is
executed.



8

1) Ui sends to MS an accountable designated verifier
signature δ = ADVS-SignUi

(m,MS,GM) over a
public and unauthenticated channel.

2) On receipt, MS retrieves Ui’s public key YUi
from its

database DBMember-MS. If no entry is found, MS sim-
ply ignores the request. Next, MS verifies δ by checking
whether ADVS-Ver(m,MS,GM; δ) = TRUE. MS
then produces a normal signature γ = SignMS(m) and
inserts a new record: (Ui, δ, γ) into its database DBSig-
MS. The signature γ will be treated as a group signature
on message m. How should the group signature γ be
sent to the potential verifier(s) depends on the local
policy. One option that allows us to completely get rid
of all anonymous channels is to let MS send γ to the
receiver.5 Another option, which is not so elegant, is to
let MS broadcast γ so that Ui can get and resend γ to
the receiver via an anonymous channel.

VERIFY. Given pkMS , the public group signature verification
key of MS, and a tag γ, anyone can verify that γ is a valid
(group) signature by running Ver on inputs: pkMS , m, and γ.

OPEN. Whenever GM decides to identify the actual signer
of signature γ on message m (i.e., the group member that
requested γ from MS), the following protocol is executed by
the group manager GM and the mediation server MS:

1) GM sends γ to MS via an authenticated communication
channel.

2) Given γ, MS retrieves from its databases (Ui, δ, γ),
which it sends to GM via the same authenticated chan-
nel.

3) GM checks whether ADVS-Ver(m,MS,GM; δ) =
TRUE; which always holds because of our trust model.
Then, GM executes ADVS-Proof to produce a proof
for SignedBy(δ,Ui). If SignedBy(δ,Ui) is TRUE, Ui is
the signer; otherwise MS takes the responsibility.

G. Security Analysis

Security of our construction is stated in the following
theorem:

Theorem 3.1: Our scheme satisfies the requirements
specified in Definition 3.1: correctness, full-traceability,
full-anonymity, no-misattribution, leak-freedom, and
immediate-revocation.

Due to space limitations, we only present below a summary
of informal security arguments. A full formal proof will appear
in a longer technical report version of this paper.
Correctness. This can be verified by inspection.
Full-traceability. Let C ⊆ U denote the set of participants that
A compromised. In particular, we allow A to compromise
all group members and partially compromise the mediation
server MS. Here, partially means that A is allowed access to
XMS – MS’ private key for ADVS. However, A is not given
access to skMS , the private key for generating external group
signatures. (Otherwise, we cannot expect any traceability.) We
can also allow A to have access to XGM, while the rest of

5In this case, there may be a need for a random delay to defeat traffic
analysis, however, such a delay already exists in current anonymous channels.

GM’s secrets remain safe. We note that, even if A has access to
XMS , we still have to assume that all the signature generation
requests are verified by the un-corrupted portion of MS . Such
an assumption not only facilitates our proof; it is also quite
realistic since, for example, different address spaces may have
different protection mechanisms.

Suppose that A that is able to produce a signature γ such
that (1) γ is valid with respect to MS’ public verification
key pkMS , and (2) GM cannot trace γ to any party P ∈
C ∪ {MS}.6 Then, we show that either the normal signature
scheme SIG or the ADVS scheme is broken. This leads to a
contradiction.
Full-anonymity. Let C ⊆ U∪{MS} denote the set of entities
that the adversary A has compromised. Note that A is allowed
to compromise MS’s private keys XMS for the ADVS scheme
as well as skMS for the normal signature scheme SIG. Of
course, A does not know GM’s private key XGM. Then, A
plays the game by choosing two honest group members Ui

and Uj and attempting to identify the actual signer of a given
group signature γ. Clearly, without access to the database
DBSig-MS, A has no clue about the actual signer and, thus,
full-anonymity is trivially obtained. (Eavesdropping on the
communication channels does not help A at all.)

In order to show the strength of our scheme (as was done in
[BMW03] with respect to previous group signature schemes),
we allow A to access DBSig-MS. Clearly, if we do not impose
any restriction on A’s capability in accessing to the recorded
signature requests in DBSig-MS, the adversary who subverts
a MS can immediately determine whether δ was generated
by Ui or Uj .

To prevent this type of triviality we require MS to
insert into DBSig-MS two entries (which reflects that if
the secrecy of database DBSig-MS is not ensured, then
MS inserts some fake entries for a group signature, as
indicated in our model): ADVS-SigUi

(m,MS,GM) and
ADVS-SigUj

(m,MS,GM), where one of them is genuine
and accepted by the un-corrupt part of MS, while the other
is faked by MS.

Suppose that A has a non-negligible advantage in
correctly guessing Ui or Uj as the actual signer. Then,
there exists an algorithm D that can distinguish Diffie-
Hellman triples (i.e., break the DDH assumption)
with almost the same advantage. To facilitate D, we
simply let D embed the challenge (g, g1, r1, r2) into
the generation of ADVS-SigUi

(m,MS,GM) and
ADVS-SigUi

(m,MS,GM) by setting YGM = g1 and
the ElGamal ciphertexts be 〈rd

2
l, rd

1
〉 where d ∈R Zq and

l ∈R {i, j} corresponding to the genuine request. We stress
that D can answer all the ADVS-Proof queries because
it has control over the un-corrupt part of MS , and that
knowing XMS , skMS , and XUi

for all Ui ∈ U does not help
A. More specifically, we let D toss a random coin to decide
which is genuine with equal probability. If the challenge
(g, g1, r1, r2) is a DDH tuple, then A has non-negligible
advantage in guessing l; otherwise, A has no advantage at

6This captures the fact that the adversary A who knows XMS can produce
an ADVS that will be accepted by the un-corrupt part of the MS.



9

all. Therefore, D can answer with non-negligible advantage
whether (g, g1, r1, r2) is a DDH tuple.
No-misattribution. The group manager GM cannot misat-
tribute δ = ADVS-SignUj

(m,MS,GM) to group member
Ui, where i 6= j. The corresponding ElGamal ciphertext is
denoted by 〈A = j · Y k

MS , gk〉. If GM can present a proof for
SignedBy(δ,Ui), then the Forking Lemma shows that there
are two accepting transcripts. This is impossible because the
input is not in the language.
Leak-freedom. Recall that MS cannot convince anyone that
a given signature γ is produced by a certain group member.
This is implied by the non-transferability of the underlying
ADVS scheme. We note that attacks mentioned in [XY02]
must be prevented by using appropriate initialization.

On the other hand, a group member Ui cannot convince
anyone, except MS , that a given signature γ is requested by
Ui. This is because we assume that the database DBSig-MS
is not available to such an adversary. (A strong-secure ADVS
scheme would ease this assumption; see Section IV for further
discussion.)
Immediate-revocation. Suppose the channel between MS
and GM is authenticated and has no delay in delivering
messages. If a malicious user Ui is able to obtain a group
signature after having been revoked, then there is an algorithm
F that breaks either the ADVS scheme or the normal signature
scheme SIG.
REMARK. Suppose that A has completely compromised MS ,
but no other party. Then, the system becomes leak-free
but does not retain full-anonymity. Therefore, leak-freedom
does not necessarily imply full-anonymity; they are geared to
address different types of attacks.

IV. EXTENSION AND DISCUSSION

Enhancing anonymity against traffic analysis. Our scheme
does not assume that the channel between a group member
U and the mediation server MS is authenticated, nor is it
assumed that there is an anonymous channel. This gain comes
from the general assumption that the MS has some potential
incentives to cheat an outsider, which, in turn, implies:

• Even if an adversary can eavesdrop on all channels, there
could still be an out-of-band channel between a group
member and MS . Thus, the adversary could still be
fooled.

• MS can easily cheat an outsider by injecting fake ADVSs
into the network or fake entries into its database.

However, an adversary might know that MS , while not being
trusted to preserve anonymity, does not always inject fake traf-
fic into the network? Then, an adversary still has a good chance
of compromising anonymity of some honest group members
by simply conducting a traffic analysis attack. Fortunately, this
can be easily resolved by using link encryption and traffic
padding.
On strong-secure ADVS vs. secure ADVS. In our con-
struction we utilized an ADVS that is secure, but not
strong-secure. Consequently, we assume the secrecy of stor-
age at MS, particularly of the database entries: (Ui, δ =
ADVS-SIGUi

(m,MS,GM), SignMS(m)). This is neces-
sary in avoiding the following attack: If an attacker has access

to such an entry in the database of MS , then Alice can
easily convince any party such as XYZ that she resulted in
SignMS(m). Clearly, if a strong-secure ADVS is utilized, then
we can achieve strictly stronger security that (for instance)
Alice is still unable to convince XYZ that she resulted in a
signature, even if she has access to the corresponding entry
in the database of MS . We remark, however, that MS is
always unable to convince XYZ that Alice resulted in an entry
(Alice, δ = ADVS-SIGAlice(m,MS,GM), SignMS(m)).
Robustness against denial-of-service (DoS) attacks. Recall
than an MS always performs some non-negligible computa-
tion (which includes modular exponentiations) before it can
determine whether an incoming signature is valid. This opens
the door for DoS attacks aiming to render MS incapable
of providing service. To counter such attacks, we propose
a simple and intuitive solution: require each Ui and MS to
share a unique secret key wi. Each signature request from Ui

must also be accompanied by an authentication token (e.g.,
a message authentication code or MAC) computed over the
request with the key wi. When processing a request, MS first
verifies the authentication token before performing a much
more expensive validation of the ADVS signature. (Verifying
a symmetric MAC or HMAC is several orders of magnitude
cheaper than verifying a public key signature.) Note that the
introduction of the authentication token does not jeopardize
the properties of our scheme, since wi is known to both Ui

and MS . (Clearly, no group signature scheme can be based
on common secrets; it is only used to protect against DoS
attacks.)

The adversary may still mount a DoS attack on an MS’
network interface. If MS’ becomes unreachable, members
can no longer generate group signatures. One simple coun-
termeasure is to duplicate the signature key among a set of
MS-s. Nevertheless, such a strategy would incur some other
issues that need to be dealt with. Furthermore, We observe
that the group manager could possibly detect compromise of
the normal signing key, provided that the adversary cannot
maintain the consistence between a fake, yet valid, normal
signature and its corresponding entry in the database. Due to
space limitation, we will analyze in detail those relevant issues
in the extended version of this paper.

A. Related Work

This paper can be viewed as one among many efforts
pursuing practical and secure group signature or identity
escrow schemes [CvH91], [CP94], [CS97], [KP98], [ACJT00],
[CL01a], as well as anonymous credential systems [C85],
[C85a], [CE86], [LRSW99], [CL01], [CvH02]. Among them,
the prior work most relevant to this paper is [CL01a], which
presented an identity escrow scheme (and a corresponding
group signature scheme) with the appointed verifier property.
Their motivation was to obtain a scheme where a group
member can only convince one or more appointed verifiers of
her membership, while no other party can verify membership
even if the signer cooperates fully. (As long as she does not
give away her long-term secrets).

Clearly, there is a difference between the appointed verifier
property in [CL01a] and the leak-freedom property specified



10

in this paper. Specifically, the [CL01a] scheme, by definition,
allows a signer to convince designated verifiers that she
is authorized to conduct relevant transactions. Cast in the
previous example, Alice can always convince XYZ that she
is authorized to sign purchase orders. However, this exact
capability can result in the leakage (outlined in Section I-B)
that we want to avoid!

Besides achieving the strictly stronger leak-freedom, our
scheme is more efficient than [CL01a] which requires both
a signer and a verifier to compute more than 17k exponen-
tiations, where k is a security parameter (say, k = 80).
Moreover, membership revocation is not supported in [CL01a],
whereas, we achieve immediate-revocation which has only
been explored in the context of traditional PKI-s [BDTW01].

A credential system is a system where users can obtain
credentials from organizations and demonstrate possession of
these credentials [C85], [C85a], [CE86], [LRSW99], [CL01],
[CvH02]. Chaum and Evertse [CE86] presented a general
scheme using a semi-trusted TTP common to multiple organi-
zations. However, their scheme is impractical. The credential
system by Lysianskaya, et al. [LRSW99] captures many of the
desirable properties. Camenisch and Lysianskaya [CL01] pre-
sented a better solution with ingredients from a secure group
signature scheme of [ACJT00]. The prototype implementation
of [CL01] was done by Camenisch and van Herreweghen
[CvH02]. This scheme requires both signers and verifiers to
compute 22 modular exponentiations. Their advanced scheme
which provides all-or-nothing non-transferability (to discour-
age a signer from sharing her credentials with other parties)
requires both signer and verifier to compute 200 exponentia-
tions.

The notion called abuse-freedom that has been previously
investigated in the context of contract signing [GJM99], is
weaker than leak-freedom because the former intends only to
prevent the designated verifier from being able to transfer the
information about the actual signer, whereas the latter intends
to prevent a signer as well as the designated verifier from
being able to transfer the same information.7 Moreover, leak-
freedom is similar to receipt-freedom property that has been
investigated in the context of voting schemes [BT94], [HS00].
The main difference is that the former disallows a signer to
convince a signature receiver for whom a signature is targeted,
whereas the latter has no such targeted signature receiver.

V. CONCLUSION

We identified two crucial aforementioned properties: leak-
freedom and immediate-revocation which are necessary for
a large class of group signature applications. We also con-
structed a practical scheme that achieves all of traditional and
newly-introduced goals by following a system architectural
approach, which is realistic since the resultant scheme is prac-
tical and easy to implement. Specifically, our scheme needs
only 11 exponentiations for a group member to generate a
group signature and one normal signature verification, such as

7Although we achieve leak-freedom using a system architecture approach
instead of a pure cryptographic approach, the latter is left an interesting open
question; see Section V below.

RSA, for its validation. Another contribution of our approach
is a careful examination of the corresponding trust model
that we relax the requirement for the underlying anonymous
communication channel, which is essential in all previous
schemes.

There are several interesting open problems for future
investigations:

• How to construct a practical strong-secure accountable
designated verifier signature scheme?

• How to construct a leak-free group signature scheme
with immediate-revocation without relying on a media-
tion server? Although we believe that the existence of a
mediation server is more realistic than the existence of
(for instance) a time-stamping service, it is nevertheless
conceivable that other alternatively constructions could fit
well into different specific application scenarios.

• How to achieve a stateless MS? This is not trivial
because the binding of an ADVS and a normal signature
will allow MS to convince an outsider of the identity of
the actual signer.

REFERENCES

[A97] R. Anderson. Invited Talk at ACM CCS’97.
[ACJT00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical

and Provably Secure Coalition-Resistant Group Signature Scheme.
Crypto’00.

[AST02] G. Ateniese, D. Song, and G. Tsudik. Quasi-Efficient Revocation
of Group Signatures. Financial Crypto’02.

[AT99] G. Ateniese and G. Tsudik. Some Open Issues and New Directions
in Group Signatures. Financial Crypto’99.

[BMW03] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of
Group Signatures: Formal Definitions, Simplified Requirements,
and a Construction Based on General Assumptions. Eurocrypt’03,
to appear.

[BM99] M. Bellare and S. Miner. A Forward-Secure Digital Signature
Scheme. Crypto’99.

[BR93] M. Bellare and P. Rogaway. Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols. ACM CCS’93.

[BT94] J. Benaloh and D. Tuinstra. Receipt-free Secret-Ballot Election
(Extended Abstract). ACM STOC’94.

[BDTW01] D. Boneh, X. Ding, G. Tsudik, and M. Wong. A Method for Fast
Revocation of Public Key Certificates and Security Capabilities.
Usenix Security’01.

[BS01] E. Bresson and J. Stern. Group Signatures with Efficient Revoca-
tion. PKC’01.

[C98] J. Camenisch. Group Signature Schemes and Payment Systems
Based on the Discrete Logarithm Problem. PhD Thesis. ETH
Zurich 1998.

[CL01] J. Camenisch and A. Lysyanskaya. An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity
Revocation. Eurocrypt’01.

[CL01a] J. Camenisch and A. Lysyanskaya. An Identity Escrow Scheme
with Appointed Verifiers. Crypto’01.

[CL02] J. Camenisch and A. Lysianskaya. Dynamic Accumulators and
Application to Efficient Revocation of Anonymous Credentials.
Crypto’02.

[CM98] J. Camenisch and M. Michels. A Group Signature Scheme Based
on an RSA-Variant. BRICS TR-98-27. Preliminary version in the
proceedings of Asiacrypt’98.

[CS97] J. Camenisch and M. Stadler. Efficient Group Signature Schemes
for Large Groups (Extended Abstract). Crypto’97.

[CvH02] J. Camenisch and E. van Herreweghen. Design and Implementation
of the idemix Anonymous Credential System. ACM CCS’02.

[C85] D. Chaum. Showing Credentials without Identification. Euro-
crypt’85.

[C85a] D. Chaum. Security without Identification: Transactions Systems
to Make Big Brother Obsolete. C. ACM 28(10): 1030-1044, 1985.



11

[CE86] D. Chaum and J. Evertse. A Secure and Privacy-Protecting Proto-
col for Transmitting Personal Information between Organizations.
Crypto’86.

[CvH91] S. Chaum and E. van Heyst. Group Signatures. Eurocrypt’91.
[CP94] L. Chen and T. Pedersen. New Group Signature Schemes. Euro-

crypt’94.
[C95] R. Cramer. Modular Design of Secure yet Practical Cryptographic

Protocols. PhD Thesis, 1995.
[CDS94] R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols.
Crypto’94.

[CW87] D. Clark and D. Wilson. A Comparison of Commercial and Mil-
itary Computer Security Policies. IEEE Symposium on Security
and Privacy. 1987.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography.
ACM STOC’91.

[E85] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme
Based on the Discrete Logarithm. IEEE Transactions of Informa-
tion Theory, 31(4), 1985, pp 469–472.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. Crypto’86.

[GHY85] Z. Galil, S. Haber, and M. Yung. Symmetric Public-Key Encryp-
tion. Crypto’85.

[GJM99] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-Free Optimistic
Contract Signing. Crypto’99.

[GM84] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of
Computer and System Sciences, vol. 28, no. 1, 1984, pp 270-299.

[GMR88] S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme
Secure against Adaptive Chosen-message Attacks. SIAM J. Com-
puting, 17(2), 1988.

[HS00] M. Hirt and K. Sako. Efficient Receipt-free Voting Based on
Homomorphic Encryption. Eurocrypt’00.

[JSI96] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier
Proofs and Their Applications. Eurocrypt’96.

[K03] J. Katz. Efficient and Non-Malleable Proofs of Plaintext Knowl-
edge and Applications. Eurorypt’03. to appear.

[KP98] J. Kilian and E. Petrank. Identity Escrow. Crypto’98.
[KY03] A. Kiayias and M. Yung. Extracting Group-Signatures from Traitor

Tracing Schemes. Eurocrypt’03, to appear.
[LRSW99] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym

Systems. SAC’99.
[MvOV96] A. Meneze, P. van Oorschot, and S. Vanstone. Handbook of

Applied Cryptography. CRC Press. 1996.
[NY90] M. Naor and M. Yung. Public-key Cryptosystems Provably Secure

against Chosen Ciphertext Attacks. ACM STOC’90.
[PS96] D. Pointcheval and J. Stern. Security Proofs for Signature

Schemes. Eurocrypt’96.
[RS91] C. Rackoff and D. Simon. Non-interactive Zero-Knowledge Proof

of Knowledge and Chosen Ciphertext Attack. Crypto’91.
[S89] C. P. Schnorr. Efficient Identification and Signatures for Smart

Cards. Crypto’89.
[S01] D. Song. Practical Forward-Secure Group Signature Schemes.

ACM CCS’01.
[TY98] Y. Tsiounis and M. Yung. On the Security of ElGamal Based

Encryption. PKC’98.
[XY02] S. Xu and M. Yung. The Dark Side of Threshold Cryptography.

Financial Crypto’02.

APPENDIX

APPENDIX A: A SECURE ACCOUNTABLE DESIGNATED

VERIFIER SIGNATURE SCHEME

We construct a secure accountable designated verifier sig-
nature scheme below and present an informal proof.

1) ADVS-Sign: Pi generates an ElGamal encryption of
i ∈ Gq using yT ; denote the ciphertext by 〈A =
i · yk

T , B = gk〉 where k ∈R Zq . Then it executes as
follows:

a) Choose k′
1
, k′

2
∈R Zq and compute A′ = y

k′
1

T , B′ =
gk′

1 , and C ′ = gk′
2 .

b) Choose d∗
1
, c2, d

∗
2

∈R Zq and compute A∗ =

y
d∗
1

T (A/j)−c2 , B∗ = gd∗
1B−c2 , and C∗ = gd∗

2y−c2

j .

c) Compute c = H(m, i, j, T, yi, yj , yT , A,B,A′, B′, C ′,
A∗, B∗, C∗), where H : {0, 1}∗ → Zq behaves
like a random oracle.

d) Compute c1 = c − c2 mod q.
e) Compute d′

1
= c1 · k + k′

1
mod q and d′

2
=

c1 · xi + k′
2

mod q. The accountable desig-
nated verifier signature on message m is δ =
(m, i, j, T, yi, yj , yT , A,B, c1, c2,
A′, B′, C ′, d′

1
, d′

2
, A∗, B∗, C∗, d∗

1
, d∗

2
).

2) ADVS-Ver: Given δ =
(m, i, j, T, yi, yj , yT , A,B, c1, c2,
A′, B′, C ′, d′

1
, d′

2
, A∗, B∗, C∗, d∗

1
, d∗

2
),

Pj can verify if: c1 + c2 =
H(m, i, j, T, yi, yj , yT , A,B,A′, B′, C ′, A∗, B∗, C∗),

y
d′
1

T (A/i)−c1 = A′, gd′
1B−c1 = B′, gd′

2y−c1

i = C ′,
y

d∗
1

T (A/j)−c2 = A∗, gd∗
1B−c2 = B∗, and

gd∗
2y−c2

j = C∗.
3) ADVS-Proof: Given δ, T publishes a proof for

loggyT = logB(A/i), which corresponds to the pred-
icate SignedBy(δ, Pi). The details are straightforward
and omitted.

Theorem 1.1: The above ADVS scheme is secure.
Proof: (sketch) We show that the scheme satisfies the

Definition 3.3.

• Unforgeability of ADVS-SignPi
(m,Pj , T ). Suppose

there is a probabilistic polynomial-time algorithm A that
doesn’t know xi and xj , and is nevertheless able to forge
a δ = ADVS-SignPi

(m,Pj , T ) with non-negligible
probability. Then there is a probabilistic polynomial-time
algorithm B that is able to break the discrete logarithm
assumption (which implies the DDH assumption). Basi-
cally, B embeds a challenge discrete logarithm instance as
the pair of public and private keys of (yi, xi) or (yj , xj),
with equal probability. The Forking Lemma [PS96] shows
that if A is able to forge a δ, then B can obtain two
accepting transcripts for the corresponding Σ-protocol,
and thus either xi or xj is extracted.

• Non-transferability of ADVS-SignPi
(m,Pj , T ). The

semantic security of ElGamal implies that one can-
not distinguish the encryption of “i” from the encryp-
tion of “j”. Moreover, Pj can fake a δ′ such that
ADVS-Ver(m,Pi, Pj ; δ

′) = TRUE using the same al-
gorithm in the above scheme.

• Unforgeability of the proof for SignedBy(δ, Pi). Suppose
there is a probabilistic polynomial-time algorithm F ,
other than Pi and T , that is able to forge a proof
for SignedBy(δ, i), no matter whether the valid δ is
produced by Pi or Pj (note that the unforgeability of
ADVS-SignPi

(m,Pj , T ) implies that no other party can
produce such a δ).
Suppose δ is indeed produced by Pi. Then we can
construct a polynomial-time algorithm D to break the
DDH assumption. Given a challenge (g, g1, r, r1), D
simply sets yT = g1, B = r and A = r1 · i. Note
that D can answer all ADVS-Proof queries by having
control over Pj . If the challenge is a DDH instance, then
F succeeds with non-negligible probability; otherwise,



12

F cannot. If F succeeds, then D bets that the challenge
is a DDH instance; otherwise, outputs a random guess.
Therefore, D succeeds with non-negligible advantage.
Suppose δ is produced by Pj . This means that (A =
j · yk

T , B = gk) for some k ∈ Zq; otherwise, the Forking
Lemma allows us either to extract xi or to have two
accepting transcripts for loggB = logyT

(A/j), either of
which is a contradiction. If F is able to produce such a
proof that loggB = logyT

(A/i), then the Forking Lemma
shows that we can get two accepting transcripts, which
is impossible since the input is not in the language.


