Incorporating a Secure Coprocessor in the Database-as-a-Service
Model

Einar Mykletun and Gene Tsudik
Computer Science Department
School of Information and Computer Science
University of California, Irvine

{mykletun,gts}@ics.uci.edu

Abstract

In this paper we suggest an extension to the
Database-as-a-Service (DAS) model that intrdocues a
secure coprocessor (SC) at an untrusted database ser-
vice provider in ordet to overcome drawbacks in the
plain DAS model. The processor serves as a meutral
party between the clients and service providers with the
goal of increasing security of outsourced data. Addi-
tionally, it supports a much broader range of queries
performed and reduces both bandwidth and computa-
tional burdens on the client. We expect these improve-
ments to make the DAS model more viable and attrac-
tive from a client’s perspective.

1 Introduction

The Database-as-a-Service (DAS) model [7] is
a manifestation of the more general Software-as-a-
Service trend which is becoming increasingly popular.
In the DAS model, the client’s database is stored at
the service provider. The provider is responsible for
provisioning adequate software, hardware and network
resources for the client’s database as well as support
the various system administration tasks.

This model, depicted in figure 1, has several benefits
to offer, which are all characteristic of the Application
Service Provider model. (1) By outsourcing databases,
clients can reduce the total cost of operation since they
are no longer required to invest in the infrastructure as
well as the personnel required to maintain the complex
databases. (2) The service provider can offer the ser-
vice to multiple clients and thus can amortize the cost
(3) The clients can be assured of the quality of service
that has been guaranteed by the service provider.

There are several new research challenges that are

posed by the Database-as-a-Service model which in-
fluence the overall performance, usability and scalabil-
ity of the system. A fundamental challenge associated
with the DAS model is the security of the stored data.
The clients store their data, which is arguably the most
valuable asset of any organization, with an external,
potentially untrusted, service provider. Therefore, it
is essential to guard the privacy of the data, not only
from malicious outside attackers but also from the ser-
vice provider itself, with the use of adequate security
measures.

- High biandidih channe|
4—p Lov bandwidth channel

Q’“oz - —

Queriers

— Lt Database

Data Owner

Server

Service Provider
Client

Figure 1. DAS Model Overview

In [6], the authors propose a novel architecture to
run SQL queries on the encrypted data directly. In this
model, the client stores the encrypted database at the
DAS server and locally stores some information which
is referred to as metadata. When the client needs to
run an SQL query, it transforms the query, based on
the metadata, into two separate queries, Qs and Q..
Qs is executed at the server directly over encrypted
data and Q. is run by the client locally on the data
received from the server as a result of the first query.

Although the DAS approach seems promising, it
also suffers from 3 major limitations, namely band-
width overhead, limited server-side query support and
overloaded clients. These stem from that the server is



only able to execute restricted portions of the database
queries over the encrypted data, which in turn results
in a superset of tuples to be sent to the client who con-
sequently needs to fulfill the remainder of the query.
This places a bandwidth and computational responsi-
bility upon the client that may be too great, especially
if the client device is limited in its computation and
energy resources.

In this paper we specify how the use of a Secure

Coprocessor at the server can help overcome current
problems in DAS and make the model more attrac-
tive. A secure coprocessor (SC) is a general-purpose
computer that can be trusted to carry out its com-
putations unmolested, even if an adversary has direct
physical access to the device [3]. Such a device can be
placed at the server to act as a neutral computing unit
that can assist in providing the client with credibil-
ity that queries are being run correctly, while reducing
the bandwidth and computational requirements at the
client by executing a larger range of query types.
Contribution: With this paper we propose a frame-
work for improving the DAS model by incorporating
a secure coprocessor at the untrusted database ser-
vice provider such as to overcome current limitations of
DAS. Although current coprocessors do not meet the
necessary technical specifications required for a truly
efficient solution, we feel that our extension makes the
whole DAS model more viable and attractive (due to
advantages in performance and usability, i.e., wider
range of supported queries).
Organization: Section 2 provides an overview of the
DAS model. In Section 3 we introduce the concept
of secure coprocessors, while the next section describes
how to incorporate them in the DAS model. We review
related work in Section 5 before concluding the paper
in Section 6.

2 Database-as-a-Service

As described in the introduction, DAS is a spe-
cific instance of an outsource database model whereby
clients who do not have the necessary resources to man-
age their own databases choose to outsource them to
database service providers. The providers take on the
responsibility for provisioning adequate software, hard-
ware and network resources for the client’s database
as well as support the various system administration
tasks. However, providers who gain complete access to
the clients’ data may not be trustworthy as they might
store databases belonging to competing clients or sim-
ply have their own malicious intentions. In order for
clients to have a high enough level of confidence in the
privacy and integrity of outsourced data, they need to

be assured that data is protected from both malicious
outsiders and the database service provider itself.

One natural choice for ensuring data privacy is to
use a strong encryption algorithm. The client encrypts
the database using a symmetric-key encryption algo-
rithm — such as AES[11] which is ideal for bulk data
encryption — and stores the it at the service provider.
Each time the client needs to execute a SQL query, it
first obtains required tables from the server, decrypts
the data and runs the query locally. While this guaran-
tees security, it is extremely expensive both in terms of
computation (from the client’s perspective) as well as
communication, thus rendering the model utterly inef-
ficient. Ideally, what we need is a way to store the data
in encrypted form, while still enabling the bulk of the
SQL processing to be performed by the server, and, at
the same time, protect the data from both inside and
outside adversaries.

2.1 Query Processing

The authors of [7] propose a novel architecture to
run SQL queries on the encrypted data directly. In
this model, a client pre-processes its data by bucketiz-
ing it according to certain metadata. A bucket iden-
tifier is appended to each sensitive numeric attribute
that is to be encrypted. These tags identify the range
of values that the attribute belongs to, i.e. a salary at-
tribute of $42,000 may be classified as belonging to the
range $40,000 to $45,000. The attributes (but not the
buckets id’s) are encrypted with the desired cryptosys-
tem to which only the client knows the decryption key,
and the resulting database is transmitted to the ser-
vice provider. Note that the provider is not given the
metadata and is therefore unaware of the specific buck-
etization that has been used, and is therefore somewhat
oblivious to the meaning of the bucket id’s that accom-
pany the database attributes.

When the client needs to run an SQL query, it first
uses its metadata to transform the query into server
side and client side queries, denoted by Q)5 and Q. re-
spectively. Qs is represented in terms of the bucket
identifiers, enabling the server to perform compara-
tive operations, such as <,>,=, =, directly on the en-
crypted data, although at a coarse level. Due to the
limited granularity that results from the bucketization,
the server selects false positives and produces a super-
set of tuples while executing )s. These are returned
(in encrypted form) to the client. Upon receiving these
tuples, the client decrypts the result set and runs Q. on
the plaintext data to complete the original SQL query,
which may involve filtering out the false positives.



2.2 Limitationsin DAS

The 3 major limitations of the DAS model are (1)
the bandwidth overhead between the server and clients,
(2) the risk of overloading clients with computations
(query processing) and (3) the limited server-side query
support. These stem from that the server is only able
to execute restricted portions of the database queries
over the encrypted data, which in turn results in a su-
perset of tuples that are sent to the client who con-
sequently needs to fulfill the remainder of the query,
placing possibly large bandwidth and computational
responsibilities.

The transmission of the superset of tuples results in
a large computational and communication overhead at
the client. The types of queries that can be run at the
server over the encrypted data are limited to logical
comparisons, thereby greatly reduces the usefulness of
the server in the query processing. Specifically, oper-
ations such as data aggregation and pattern matching
are not supported in full', resulting in a larger work-
load at the clients. This might be acceptable if the
client is using a desktop/laptop with a high-speed net-
work connection, but not so in case the client is a weak
device such as a cell phone or low-end PDA, where bat-
tery power and computational resources are limited.
Additionally, when communication is a premium, the
bandwidth overhead described above becomes of even
greater significance.

As can be seen from above, all the mentioned prob-
lems stem from that the server is unable to be of great
use during the query processing, and the reasons for
this are two-fold. Firstly, the server is working with
encrypted tuples and the corresponding bucket iden-
tifiers, which limits both the accuracy of comparison
operands and other query operation such as pattern
matching. Secondly, the granularity of the bucketiza-
tion greatly affects the number of false positives se-
lected by the server during the execution of Q)s, which
directly affects the bandwidth overhead and amount of
necessary post-processing at the client. There are sev-
eral possible ways to bucketize the data and it becomes
a balance between accuracy and security. A more gran-
ular bucketization results in a data set that leaks a
greater amount of information and can lead to attacks
based on statistical inferences. Specifically, if the num-
ber of buckets are too numerous, it may be possible
for an attacker who knows the type of data stored (for

IThe authors of [6] suggest the use of homomorphic encryp-
tion functions, which allow for certain arithmetic operations to
be performed directly over ciphertexts. However, due to the
bucketization strategies used, it is only possible for the service
provider to compute aggregates without false positives if the
query range is exactly bounded by the bucket boundaries.

example, employees records) to map out the encrypted
database according to an expected distribution. Too
few buckets results in larger supersets as more false
positives get included. The subject of bucketization
and privacy-preserving indexing for databases is fur-
ther investigated in [8].

3 Secure Coprocessors

A secure coprocessor (SC) is a general-purpose com-
puter that can be trusted to carry out its computations
unmolested, even if an adversary has direct physical ac-
cess to the device [3]. It is equipped with a processor,
non-volatile secure memory, input devices, a backup
battery and is fully enclosed in a tamper-proof con-
tainer (shielding any type of penetration) that can not
be opened without triggering sensors that alert about
an attack taking place. A SC can be installed on a
computer to provide a secure perimeter in which sensi-
tive data may be stored and processed. The security of
such a device results from it being equipped with a mul-
titude of sensors that can detect a variety of physical
attacks. In the case that a penetration of the device
is detected through the signaling by sensors that are
monitoring possible attack venues, an alarm triggers
and all contents in the secure memory is erased, possi-
bly by destroying the physical memory chip by leaking
acid onto it.

In addition to its security features, a SC may be
equipped with hardware support for cryptographic op-
erations, such as encryption, hashing and random-
number generation. A logical approach to incor-
porating an SC into a system is therefore to store
cryptographic keys and other sensitive data within
the secure on-board memory and use it as a encryp-
tion/decryption device. Such solutions have already
been proposed in the context of secure web-servers in
which the goal is to reduce the level of trust placed
on the server [10], and in secure auctions such that
the buyers and sellers can avoid having to fully trust
the auctioneer [12] . An SC is somewhat limited in its
computing resources, both in processor speed and the
amount of on-board memory available. This is a conse-
quence of a variety of factors, but heat dissemination is
one that stands out. Because the enclosure is designed
to be tamper-proof, it is restricted in surface area and
difficult to keep cool (because of no room for fans). The
IBM 4758 SC, which is the first of its kind, is equipped
with a 99 Mhz processor and 2 MB on-board memory
[3], although technological advances have been realized
since its introduction and are expected to continue.

Since the SC is a programmable unit, it is possible
to provide it with a query execution engine. This has



already been realized in [2] where the authors imple-
ment a query processor on a smartcard, a device even
more restricted in its resources than the IBM 4758.
One of the biggest hurdles involved with implementing
a database engine on such a processor is the limited on-
board storage space, resulting in that the device only
can handle small databases or require an external stor-
age device to interact with.

4 Secure Co-Processors in DAS

In this section we describe our proposed framework
which consists of incorporating a secure coprocessor
into the DAS model. The approach consists of in-
stalling a SC at the untrusted database service provider
(server) to aid with the processing of confidential client
queries. The client no longer bucketizes its data prior
to storing it at the server. As described in section 2.2,
the use of bucketization is inherently insecure (to some
level) as information is leaked through bucket identi-
fiers, and we therefore wish to completely remove this
component. It is also assumed that the client can com-
municate with the SC, via the server, and that all such
communication is sent over a secure channel, such as a
VPN tunnel or an SSL connection. To set up such a
channel, the client uses the public key of the SC to set
up any additional necessary session keys. The client’s
database is encrypted with a symmetric-key algorithm
well suited for bulk encryption, such as AES, and trans-
mitted to the server. The encryption key is transmitted
to and stored at the secure coprocessor, and thereby
shared between it and the client.

4.1 Query Processing

When posing a query, a client splits it into a SC side
(Qsc) and a client side (Q.) query, initiates a handshake
protocol with the SC in which a session key is estab-
lished and transits Qs. and Q. to the SC encrypted
under this key. The SC, who has access to the en-
crypted database tuples stored at the server, runs the
query Qs.. Due to its restricted resources, and in par-
ticular its limited RAM size, it is necessary for it to
use the server’s storage space as its virtual memory in
which it stores intermediary query results. After exe-
cuting Q. the SC either encrypts the results with its
session key and sends the ciphertext to the client, or
performs the additional Q). query and then transmits
the encrypted results. In the former case the client is
required to run Q. on the decrypted results, while in
the latter it simply decrypts the received data.

As discussed below, the SC may be limited in the
complexity of SQL queries that it can process effi-

ciently, especially when executing operations that re-
quire several passes through large data sets (such as
sorting). It may therefore be appropriate for the client
to execute portions of the query, denoted by Q., upon
receiving the query results from the SC. This is espe-
cially true if involving the client in the computation re-
duces the total query execution time (including trans-
mission of the results). Whether or not @, should be
executed at the client depends upon upon the computa-
tional resources and bandwidth available to the client.
For example, if the client is a laptop computer with a
high-speed internet connection, then it may be quicker
to have the SC transmit (via the server) a larger data
set on which the client could execute (). than pushing
the extra computations on the SC. On the other hand,
if the client is a cell phone using a GPRS connection to
connect to the internet (GPRS has a theoretical max-
imum speed of 171.2 kbps, but much lower speeds are
achieved in practice), it is probably best to send it as
small a result set as possible as well as perform all com-
putations at the SC. The client can identify its resource
constraints and bandwidth capabilities at the time of
posing the query, and with this information, the SC
can determine whether or not to execute Q). itself.

Figure 2 depicts the envisioned DAS model with the
SC and queries Q.5 and Qs.

Server

— Database

Client

- SC
~ B8 i
_____ [] “boooo

Figure 2. The DAS Model with a Secure Co-
processor.

4.2 TupleAccess Privacy

Because today’s secure coprocessors are limited in
on-board memory, it becomes necessary for them to use
a crypto paging technique, which is identical to the con-
cept of virtual memory, only that the contents are en-
crypted prior to being temporarily stored at the server.
Crypto paging is required because the SC has insuffi-



cient memory to store intermediary query results, such
as during a Join operation. However, as the SC utilizes
the server’s storage space for its crypto paging needs, a
new subtle security threat arises which in turn requires
a counter security service which we label as tuple ac-
cess privacy. This refers to the technique of hiding
what tuples (or blocks thereof) are fed as input to the
SC and later included in query results. The frequency,
contents and context of page swaps can be observed
by the sever, which means that for every input to the
SC the server can observe the output. We wish to
hide from the server any correspondence between the
data input to the SC and content of data stored during
crypto paging, as this could reveal whether or not the
input tuples are to be part of the query result.

Tuple access privacy might seem identical to the
problem of private information retrieval (PIR), a topic
that has received considerable attention in the crypto-
graphic research community [5, 1, 4]. From a database
perspective, the PIR problem can be stated as: “What
does it take to implement a server that provides access
to records in a large database, in a way that ensures
access privacy and, potentially, the privacy of contents
of the records themselves, even to the operator of this
server?” [14]. There seems to be now way of solv-
ing this problem without using multi-round algorithms
that involve obscuring the selection process by pass-
ing through the entire database. Such a solution may
prove too costly for our model.

One possible solution for the tuple access privacy
problem is for the SC to hide the relationship between
incoming and outgoing data. This can be (partially)
achieved by keeping a large enough buffer at the SC to
store multiple blocks read from disk. It then becomes
possible for the SC to use some randomness in selecting
which blocks to write back to disk (as part of crypto
paging) during query execution. For example, instead
of reading one block of tuples from disk and immedi-
ately writing back those tuples that meet the query
predicaments, the SC can instead delay the action of
outputting tuples based on a probabilistic function or
once its buffer becomes full. In addition, if the data
returned to disk is encrypted non-deterministically, it
becomes more difficult for an observer to match input
blocks with output blocks. An extension is to incor-
porate more than one SC at the server, allowing for
parallel execution.

We intend to pursue the issue of tuple access privacy
in future work by identifying exactly what information
the server can learn by observing the input and output
to the SC, and what can be done to prevent any leakage
of damageable information.

4.3 Performance

The performance of our approach very much de-
pends upon the amount of data that is transmitted
between the server and the SC, and consequently the
number of calls to the encryption engine onboard the
SC. It is important to identify the granularity at which
to encrypt the database tuples, as it can be performed
at an attribute-, tuple- or page-level. The choice affects
the the overhead incurred due to encryption and the
speed at which data can be encrypted and decrypted.
For each run of an encryption or decryption algorithm,
there is a cost associated with the initialization of key
schedules and other states related to the algorithm.
From a performance perspective, it is therefore benefi-
cial to minimize the number of encryption and decryp-
tion operations performed, and this can be achieved by
encrypting data in larger chunks (bulk encryption).

The work in [9] proposed a partitioned plaintext and
ciphertext (PPC) secure database storage model that
attempts to optimize encryption and decryption speed,
while taking into account factors such as ciphertext ex-
pansion and non-deterministic encryption?. The main
idea is to split disk pages into two minipages: one rep-
resenting plaintext attributes and another — ciphertext
attributes. This limits the number of encryption op-
erations per accessed page and also limits ciphertext
expansion to the size of one ciphertext block (i.e., 16
bytes for AES). An additional benefit of this approach
is the separation of sensitive and non-sensitive data, al-
lowing two categories to be queried independently and
avoiding over-encryption (encrypting data that is not
sensitive). The PPC approach might be an appropriate
choice to speed up encrypted data access for the SC.

Query processing performance also becomes a con-
cern when using a SC. In [14] the authors describe how
the IBM 4758 SC suffers from a relatively large latency
which stems from the slow bus speed on the copro-
cessor. Specifically, the communication between the
onboard encryption engine and the input/output com-
ponents proved to be a bottleneck. This is the reason
why multi-pass operations on data, such as sorting and
joins, are relatively inefficient to run at the SC. Tempo-
rary data structures need to be encrypted before they
are placed on disk during crypto paging, and this adds
to the number of calls to the encryption engine on the
SC. We expect that future generation of SC’s will have
improved architectural features and will be able to offer
much better throughput.

2Non-deterministic encryption refers to that multiple encryp-
tions of the same plaintext should result in different ciphertexts.



5 Related Work

In [6] the authors focus on how to allow an untrusted
server to run SQL queries over encrypted data in the
DAS model. They make use of a homomorphic encryp-
tion scheme by Rivest et al. [13] with the property that
the addition and multiplication of ciphertexts results
in the identical arithmetic operations on the decrypted
plaintexts, and with this scheme they are able to run
certain aggregation queries. However, this cryptosys-
tem’s security relies upon an attacker’s limited knowl-
edge, specifically no knowledge about the data domain
(plaintext values). Such an assumption is unrealistic in
commercial settings whereby such information is stan-
dard and predictable, thereby greatly limiting their ap-
proach.

Instead of relying upon homomorphic encryption
techniques, the authors in [2] propose to use tamper
proof smartcards as mediators between clients and en-
crypted databases stored at untrusted DBA’s. Data
encryption, query evaluation and access right manage-
ment are insulated within the smartcard and protected
from tampering. Queries are split into server-side,
smartcard-side and client-side portions, requiring the
server to perform any portion of the query where pred-
icates are equality comparators (=, #). This assumes
that database entries are encrypted deterministically —
encryption of the same plaintext always yields the same
ciphertext — which makes the stored data vulnerable to
statistical attacks by the DBA and intruders. However,
if non-deterministic encryption were used, the above
query spitting could not be realized and the resulting
work load placed on the smartcard would be too great.

Similar our work, Smith and Safford investigate us-
ing secure coprocessors for providing access to database
records while maintaining privacy with respect to both
DBAs and outsiders [14]. Their approach is relatively
theoretical as they aim to hide which encrypted tuples
are selected as part of query response (which requires
algorithms that touch upon every tuple in a database
for every query posed). This differs from our goal, since
we are not necessarily interested in completely hiding
which of the encrypted tuples are selected. The perfor-
mance of their solution is measured (with the IBM 4758
coprocessor [3]) and a conclusion is reached that cur-
rent technology is inadequate to realize a full-fledged
database querying model. The main bottleneck en-
countered is the direct memory access speed between
the coprocessor’s 3DES engine and internal RAM. We
acknowledge that this limitation applies to our exten-
sion to the DAS model; however, the near-future ad-
vances in SC technology will most likely overcome ob-
viate this problem.

6 Conclusion

This paper introduced a framework for including a
secure coprocessor in the outsourced database model
(also known as: Database-as-a-Service). The SC acts
as a trusted intermediary between the database service
provider and its clients, who store their databases at
these untrusted service providers. Weaknesses exist-
ing in the plain DAS model — such as: limited server
side query support, bandwidth overhead and computa-
tionally overloaded clients — can be overcome with the
inclusion of an SC at the server side.

We describe how the query model changes with the
incorporation of the SC, while still utilizing the client
for certain parts of database queries, such as sort-
ing and other operations that require multiple scans
through a large number of tuples. To increase per-
formance of query processing, we suggest the use of a
database storage model optimized to handle encrypted
tuples.

Due to the current state of secure coprocessor tech-
nology, it is necessary for SC’s to have access to ex-
ternal storage when storing large intermediary results.
This leads to concerns about tuple access privacy,
whereby a server can observe which (encrypted) tu-
ples are included in query responses. As part of future
work, we intend to: (1) pursue this topic in greater de-
tail to identify the exact threats and possible defense
mechanisms and (2) implement (and experiment with)
our framework using a real SC, such as the IBM 4758.

References

[1] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin.
One-way Functions are Essential for Single-Server Pri-
vate Information Retrieval. In Symposium on Theory
of Computing, 1999.

[2] L. Bouganim and P. Pucheral. Chip-Secured Data Ac-
cess: Confidential Data on Untrusted Servers. In Inter-
national Conference on Very Large Data Bases, pages
131-142, 2002.

[3] J. G. Dyer, M. Lindemann, R. S. R. Perez, L. van
Doorn, and S. W. Smith. Building the IBM 4758 Secure
Coprocessor. In EEE Computer, pages 57—66, 2001.

[4] Y. Gertner, S. Goldwasser, and T. Malkin. A Random
Server Model for PIR. In RANDOM, 1998.

[5] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting Data Privacy in Private Information Re-
trieval Schemes. In Symposium on Theory of Comput-
ing, 1998.

[6] H. Haciglimiig, B. Iyer, C. Li, and S. Mehrotra. Ex-
ecuting SQL over Encrypted Data in the Database-
Service-Provider Model. In ACM SIGMOD Conference
on Management of Data, pages 216-227. ACM Press,
June 2002.



[7]

(10]

(11]

(12]

H. Hacigiimiig, B. Iyer, and S. Mehrotra. Providing
Database as a Service. In International Conference on

Data Engineering, March 2002.
B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-

Preserving Index for Range Queries. In International

Conference on Very Large Databases, 2004.
B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and

Y. Wu. A Framework for Efficient Storage Security
in RDBMS. In International Conference on Extending

Database Technology, pages 169179, 2004.

S. Jiang, K. Minami, and S. Smith. Securing Web
Servers against Insider Attack. In Annual Computer
Security Applications Conference, 2001.

N. I. of Standards and Technology. Advanced encryp-
tion standard. NIST FIPS PUB 197, 2001.

A. Perrig, S. Smith, D. Song, and J. Tygar. SAM:

A Flexible and Secure Auction Architecture using
Trusted Hardware. In The Electronic Journal for E-

Commerce Tools and Applications, volume 1, 2002.
R. Rivest, L. Adleman, and M. Dertouzous. On Data

Banks and Privacy Homomorphisms. In Foundations of
Secure Computation, Academic Press, pages 169-179,

1978.
S. W. Smith and D. Safford. Practical server privacy

with secure coprocessors. In IBM Systems Journal,
pages 683-695, 2001.



