
1

1

Privacy and Integrity in Privacy and Integrity in
Outsourced DatabasesOutsourced Databases

Gene Tsudik
Computer Science Department

School of Information & Computer Science
University of California, Irvine

gts@ics.uci.edu

2

Software as a ServiceSoftware as a Service

• Get
– what you need
– when you need it

• Pay for
– what you use

• Don’t worry about:
– Deployment, installation, maintenance, upgrades
– Hire/train/retain people

2

3

Software As a Service: Why?Software As a Service: Why?

• Advantages
– reduced cost to client

• pay for what you use and
not for: hardware,
software infrastructure or
personnel to deploy,
maintain, upgrade…

– reduced overall cost
• cost amortization across

users
– better service

• leveraging experts across
organizations

• Driving Forces
– Faster, cheaper, more accessible

networks
– Virtualization in server and

storage technologies
– Established e-business

infrastructures

• Already in Market
– Horizontal storage services,

disaster recovery services, e-mail
services, rent-a-spreadsheet
services etc.

– Sun ONE, Oracle Online Services,
Microsoft .NET My Services, etc

Better Service Cheaper

4

Emerging Trend: Database As a ServiceEmerging Trend: Database As a Service

40%

51%

51%

57%

58%

0 10 20 30 40 50 60 70

% of respondents (Source: InfoWeek Research)

Platform Independence

Qualified Programmers

Compatibility

Qualified Administrators

Ease of Administration

Most Significant DB Execution Problems

• Why?
– Most organizations need DBMSs
– DBMSs extremely complex to deploy, setup, maintain
– require skilled DBAs (at very high cost!)

3

5

The DAS ProjectThe DAS Project****

Goal: Security for the Database-as-a-Service

People: Sharad Mehrotra, Gene Tsudik
Ravi Jammala, Maithili Narasimha,
Bijit Hore, Einar Mykletun, Yonghua Wu

** Supported in part by NSF ITR grant “Security & Privacy in Database as a Service”

6

Rough OutlineRough Outline
• What we want to do
• Design space
• Challenges
• Architecture
• Bucketization
• Integrity & Authenticity
• Aggregated signatures
• Hash trees
• Related work

4

7

What do we want to do?What do we want to do?

• Database as a Service (DAS) Model
– DB management transferred to service provider for

• backup, administration, restoration, space management,
upgrades etc.

– use the database “as a service” provided by an ASP
• use SW, HW, human resources of ASP, instead of your own

Application Service Provider (ASP)

Internet

Server

DB

User

8

DAS variablesDAS variables

• Database types
• Interaction dynamics
• Trust in Server

5

9

What do we want to do?What do we want to do?

Database Types in the DAS Model:
– Warehousing (write once, read many)

– Archival (append only)

– Dynamic

Application Service Provider (ASP)

Internet

Server

DB

User

10

1. Unified Owner Scenario1. Unified Owner Scenario

Data Deposit + Queries

BTW:
• Owner may be anemic (battery, CPU, storage)
• Owner may have a slow/unreliable link
• Data “deposit” is << frequent than querying

Owner/User Encrypted User
Database

Server

Server Site

6

11

2. Multi2. Multi--QuerierQuerier ScenarioScenario

Encrypted User
Database

Data Deposit

& queries

Server

Server Site

Data Queries
Querier 1

Querier 3Querier 2

Owner

12

3. Multi3. Multi--Owner ScenarioOwner Scenario

Owner 1 Encrypted User
Database

Data Deposit &

queries

Server

Server Site

Data Queries

Querier 2

Owner 2

Owner 3
Querier 1

7

13

ChallengesChallenges
• Economic/business model?

– How to charge for service, what kind of service guarantees can
be offered, costing of guarantees, liability of service provider.

• Powerful interfaces to support complete application
development environment
– User Interface for SQL, support for embedded SQL programming,

support for user defined interfaces, etc.

• Scalability in the web environment
– Overhead costs due to network latency (data proxies?)

• Privacy/Security
- Protection of outsourced data from intruders and attacks
- Protecting clients from misuse of data by service providers
- Ensuring result integrity+authenticity
- Protecting service providers from “litigious” clients

14

Core ProblemCore Problem

We do not fully trust the
service provider with
sensitive information!

8

15

What do we mean by:What do we mean by: ““do not fully trustdo not fully trust””??

Degrees of mistrust in Server:
1. Trusted: outsider attacks only (e.g., on

communication)
Encrypt data in transit, apply usual security
measures

2. Partially trusted: break-ins, attacks on storage only

3. Untrusted: server can be subverted or become
malicious

16

Partially trusted serverPartially trusted server

Break-ins, attacks on storage
Storage may be de-coupled from CPU
Encrypt data “in situ”, keep keys elsewhere
Where: in CPU, in secure HW (tamper-resistant, or
token-style), at user side, etc.

9

17

Secure and Efficient RDBMS Storage ModelSecure and Efficient RDBMS Storage Model

• Need to reduce overhead associated with encryption
– Today’s storage models don’t lend themselves to efficient

encryption solutions

• Server is partially trusted
– Data encrypted on disk, unencrypted in memory

• We developed RDBMS storage model to:
– Reduce number of encryption calls (start-up cost dominates)
– Reduce padding overhead: database attributes can be

especially sensitive
• 16 byte blocks: 2 byte attribute requires 14 bytes padding (w/AES)

– Avoid over-encrypting: queries on non-sensitive data should run
with minimal overhead

18

Secure and Efficient RDBMS Storage ModelSecure and Efficient RDBMS Storage Model

17044095280Blowfish
229354372DES
194334365AES

16 Kbytes *
625

120 Byte *
83,333

100 Byte * 100,000 Encryption Algorithm

Encryption of 10 Mbytes - all times in Msec

• Start-up Cost
– Includes creating key schedule
– Start-up cost incurred for each encryption operation
– Fine encryption granularity results in many encryption operations

Fewer “large” encryptions better than many “small”

10

19

NN--aryary Storage Model (used today)Storage Model (used today)

1 Mike Toys 8K 2 John Sales
10K 3 Tom Toys 6K

Page Header

Offset table

• Records stored sequentially
– How do distinguish sensitive from non-sensitive?
– Attribute level encryption (padding, cost)

20

• Fewer “large” encryptions better than many “small”
• Create homogeneous mini-pages
• Distinguish sensitive from non-sensitive data

– Maximum one encryption operation per page
– Padding per mini-page (versus attribute / record)
– No overhead when querying non-sensitive data

1 Toys 2 Sales 3
Toys

Page Header

Offset

Ciphertext
minipage
(name,salary)

Offset

Mike 8K John 10K Tom 6K

Plaintext
minipage
(empNo,dept)

PPC PPC –– Partition Plaintext Ciphertext Model (EDBTPartition Plaintext Ciphertext Model (EDBT’’04)04)

11

21

UntrustedUntrusted serverserver

Cannot trust server
with database
contents

22

Rough GoalsRough Goals

Encrypt client’s data and store at server

Client:
runs queries over encrypted remote data
and
verifies integrity/authenticity of results

Most of the work to be done by the server

12

23

System Architecture (ICDESystem Architecture (ICDE’’02)02)

Encrypted User

Database

Query
Translator

Server Site

Temporary
Results

Result
Filter

Metadata
Original Query

Server Side
Query

Encrypted
Results

Actual Results

Service Provider

User

Client Site

Client Side
Query ?

? ?

24

Query Processing 101Query Processing 101……
• At its core, query processing consists of:

– Logical comparisons (> , <, = , <=, >=)
– Pattern based queries (e.g., *Arnold*egger*)
– Simple arithmetic (+, *, /, ^, log)

• Higher level operators implemented using the above
– Joins
– Selections
– Unions
– Set difference
– …

• To support any of the above over encrypted data,
need to have mechanisms to support basic
operations over encrypted data

13

25

Fundamental ObservationFundamental Observation……
• Basic operations do not need to be fully

implemented over encrypted data

• To test (AGE > 40), it might suffice to devise a
strategy that allows the test to succeed in most
cases (might not work in all cases)

• If test does not result in a clear positive or
negative over encrypted representation,
resolve later at client-side, after decryption.

26

Relational EncryptionRelational Encryption

4105000Lisa
395000James
2110000Mary
250000John

PINSALARYNAME

65
50
65
50

N_ID

%%33w&%gfs##!
&%gfsdf$%343v<l
F%%3w&%gfErf!$
fErf!$Q!!vddf>></|

etuple

202
202
102
101

P_IDS_ID

Server Site

Store an encrypted string – etuple – for each tuple in the original table

This is called “row level encryption”

Any kind of encryption technique can be used

Create an index for each (or selected) attribute(s) in the original table

14

27

Building the Index:Building the Index:

• Partition function divides domain values into partitions (buckets)

Partition (R.A) = { [0,200], (200,400], (400,600], (600,800], (800,1000] }

– partition function has impact on performance as well as privacy
– very much domain/attribute dependent
– equi-width vs. equi-depth partitioning?

2000 400 600 800 1000

2 7 5 1 4

Domain Values

Partition (Bucket) ids

Identification function assigns a partition id to each partition of attribute A

e.g. identR.A((200,400]) = 7
Any function can be use as identification function, e.g., hash functions
Client keeps partition and identification functions secret (as metadata)

28

BucketizationBucketization / Partitioning / Indexing/ Partitioning / Indexing

• Primitive form of encryption, sort of a
“substitution/permutation cipher”

• Can be viewed as partial encryption
• Works fine with warehoused data but needs to be

periodically re-done with highly dynamic data
• Attacks (assume domain known)

– Ciphertext only
– “Existential” plaintext
– Known plaintext
– Chosen plaintext
– Adaptive chosen plaintext

15

29

Mapping Functions (SIGMODMapping Functions (SIGMOD’’02)02)
• Mapping function maps a value v in the domain of

attribute A to partition id

– e.g., MapR.A(250) = 7 MapR.A(620) = 1

2000 400 600 800 1000

2 7 5 1 4

Domain Values

Partition (Bucket) ids

30

Storing Encrypted DataStoring Encrypted Data

R = < A, B, C > ⇒ RS = < etuple, A_id, B_id, C_id >

etuple = encrypt (A | B | C)
A_id = MapR.A(A), B_id = MapR.B(B), C_id = MapR.C(C)

4105000Lisa
395000James
2110000Mary
250000John

PINSALARYNAME

65
50
65
50

N_ID

%%33w&%gfs##!
&%gfsdf$%343v<l
F%%3w&%gfErf!$
fErf!$Q!!vddf>></|

Etuple

202
202
102
101

P_IDS_ID
Table: EMPLOYEE Table: EMPLOYEES

16

31

Mapping ConditionsMapping Conditions

Q: SELECT name, pname FROM employee, project
WHERE employee.pin=project.pin AND salary>100k

• Server stores attribute indices determined by mapping functions
• Client stores metadata and uses it to translate the query

Conditions:
• Condition ← Attribute op Value
• Condition ← Attribute op Attribute

• Condition ← (Condition ∨ Condition) | (Condition ∧ Condition)
| (not Condition)

32

Mapping Conditions (2)Mapping Conditions (2)

Example: Equality

• Attribute = Value
– Mapcond(A = v) ⇒ AS = MapA(v)
– Mapcond(A = 250) ⇒ AS = 7

2000 400 600 800 1000

2 7 5 1 4

Domain Values

Partition Ids

17

33

Mapping Conditions (3)Mapping Conditions (3)

Example: Inequality (<, >, etc.)

• Attribute < Value

– Mapcond(A < v) ⇒ AS ∈ { identA(pj) | pj.low ≤ v) }

– Mapcond(A < 250) ⇒ AS ∈ {2,7}

2000 400 600 800 1000

2 7 5 1 4

Domain Values

Partition Ids

210 355 234 390 At client site

34

Mapping Conditions (4)Mapping Conditions (4)

• Attribute1 = Attribute2

– Mapcond(A = B) ⇒∨N (AS = identA(pk) ∧ BS = identB(pl))
where N is pk ∈ partition (A), pl ∈ partition (B), pk ∩ pl ≠ ∅

3(200,300]
4(100,200]
2[0,100]

A_idPartitions

8(200,400]
9[0,200]

B_idPartitions

C : A = B ⇒ C’ : (A_id = 2 ∧ B_id = 9)
∨ (A_id = 4 ∧ B_id = 9)
∨ (A_id = 3 ∧ B_id = 8)

18

35

Relational Operators over Encrypted RelationsRelational Operators over Encrypted Relations

• Partition the computation of the operators across client and
server

• Compute (possibly) superset of answers at the server
• Filter the answers at the client
• Objective : minimize the work at the client and process the

answers as soon as they arrive requiring minimal storage at the
client

Operators studied:
– Selection
– Join
– Grouping and Aggregation (in progress)
– Sorting
– Duplicate Elimination
– Set Difference
– Union
– Projection

36

Selection OperatorSelection Operator

σA=250

TABLE

2000 400 600 800 1000

2 7 5 1 4

Example:
σA=250

D

E_TABLE

σA_id = 7

Client Query

Server Query

σc(R) = σc(D (σS

Mapcond(c)(R
S
))

19

37

Join OperatorJoin Operator

C

EMP PROJ

C : A = B ⇒ C’ :(A_id = 2 ∧ B_id = 9)
∨(A_id = 4 ∧ B_id = 9)
∨(A_id = 3 ∧ B_id = 8)

3(200,300]
4(100,200]
2[0,100]

A_idPartitions

8(200,400]
9[0,200]

B_idPartitions

R c T = σc(D (R
S S

Mapcond(c) T
S
)

Example:

C’

E_EMP E_PROJ

σA=B

D

Client Query

Server Query

38

Research Challenges..Research Challenges..
• Aggregation queries, e.g., how to do: Σ(a*b+c)

• RSA can do *
• Pailler can do +
• How to do both?

• Complex queries
– Nested
– Embedded
– Stored procedures
– Updates

• Query optimization
• Privacy guarantees

– Against different types of attacks -- ciphertext only attack, known plaintext
attack, chosen plaintext attack (work-in-progress)

• Generalized DAS models
– What if there are more than a single owner and server?
– Can the model work for storage grid environments

• Key management policies

20

39

Integrity and Authenticity in DASIntegrity and Authenticity in DAS

• Not all outsourced data needs to be encrypted
• Some data might be only partially encrypted
• At times, authenticity is more important, especially, in

multi-querier and multi-owner scenarios
• This is different from query completeness, i.e., making

sure that server returned all records matching the query

• Need to minimize overhead:
1. Bandwidth, storage, computation overhead at querier
2. Bandwidth, storage, computation overhead at owner?
3. Bandwidth, storage, computation overhead at server?

40

Challenge: how to provide
efficient authentication + integrity
for a potentially large and
unpredictable set of records
returned?

Integrity and Authenticity in DASIntegrity and Authenticity in DAS

21

41

Integrity and Authenticity in DASIntegrity and Authenticity in DAS

• What granularity of integrity: page, relation, attribute,
record?

• What mechanism: MACs, signatures?

• Not a problem in unified owner scenario (use MACs)

• For others: record-level signatures but what kind?
– Boneh, et al. aggregated multi-signer signatures

– Batch RSA

– Batch DSA or other DL-based signature schemes

– Hash Trees and other data structures

42

Batch Verification of RSA SignaturesBatch Verification of RSA Signatures
• Batching: useful when many signature verifications need

to be performed simultaneously

• Reduces computational overhead
– By reducing the total number of modular exponentiations

• Fast screening of RSA signatures (Bellare et al.):
– Given a batch instance of signatures {σ1, σ2 …σt} on distinct

messages {m1, m2 … mt}

where h() is a full domain hash function

)(mod)(
11

nmh
t

i

i

et

i

i ∏∏
==

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ

22

43

Fast Screening Fast Screening
• Reduces querier computation but not bandwidth

overhead
– Individual signatures are sent to the querier for verification

• Bandwidth overhead can be overwhelming
– Consider weak (anemic) queriers
– Query reply can have thousands of records
– Each RSA signature is at least 1024 bits!

Can we do better?

44

Condensed RSA (NDSSCondensed RSA (NDSS’’04)04)

• Server:
– Selects records matching posed query
– Multiplies corresponding RSA signatures
– Returns single signature to querier

Given t record signatures:

{σ1, σ2 …σt} ,

compute combined signature
σ1,t = Πσi mod n

Send σ1,t to the querier

Server

σ1,t

Given t messages:

{m1,m2 … mt} and σ1,t

verify combined signature:

(σ1,t)e = ? =Π h(mi) (mod n)

Querier

23

45

Condensed RSACondensed RSA
• Reduced querier computation costs

– Querier performs (t-1) mult-s and a one exponentiation
• Constant bandwidth overhead

– Querier receives a single RSA signature
• As secure as batch RSA (with FDH)

However, still can’t aggregate signatures by
different signers!

(an RSA modulus cannot be shared)

Condensed RSA efficient for Unified-owner and
Multi-querier but NOT great for Multi-owner

46

Batching DLBatching DL--based signaturesbased signatures

• DL-based signatures (e.g., DSA) are efficient to generate

• Batch verification possible

• Unlike RSA, different signers can share the system

parameters

useful in the Multi-Owner Model?

Unfortunately, no secure way to aggregate
DL-based signatures !

24

47

DLDL--based signaturesbased signatures……(cont(cont’’d)d)

• All current methods for batch verification of DL-based
signatures require “small-exponent test”

• Involves verifier performing a mod exp (with a small
exponent) on each signature before batching the
verification.
– Without this, adversary can create a batch instance which

satisfies verification test without possessing valid individual
signatures

• Thus, individual signatures are needed for verification
aggregation seems impossible.

48

So farSo far……
1. Condensed RSA

– Cannot combine signatures by multiple signers
– Querier computation, bandwidth overhead linear

in # of signers

2. Batch DSA (and variants)
– Can batch-verify signatures by distinct users and

but cannot aggregate or condense
– Querier computation as well as bandwidth

overhead linear in # of signatures (records)!

25

49

Aggregated signature scheme by Aggregated signature scheme by BonehBoneh, et al., et al.
• Signatures on different messages by multiple signers can be combined

into one small signature.
• Scheme requires bilinear map (in Gap DH groups)
• BGLS Details:

∏
=

=
t

i

i,t σσ
1

1

Key Generation:
pick a random x Є Zp and compute v=gx

v - public key, x - secret key.
Signing:

let h = h(m) -- hash of message
σ = hx

Aggregation:
To aggregate t signatures, compute their product

Verification:
Compute the product of the hashes and verify
where e() is a computable bilinear mapping

∏
=

=
t

i

iit vhege
1

,1),(),(σ

∏ ∏ ∏ ∏
= = = =

= ===
t

i

t

i

t

i

t

i
ii

x
i

x
i

x
it vheghegheghege i

i
i

1 1 1 1

,,1),(),(),()((),(σ

50

Aggregated signature scheme by Aggregated signature scheme by BonehBoneh, et al., et al.

• Applicable to all DAS flavors

• Constant bandwidth overhead

• For Unified-owner and Multi-querier, querier verification
costs (t-1) EC mults (where t is # returned records) and
two bilinear mappings

• For Multi-owner, verification of aggregated signature costs
(k+1) bilinear mappings (where k is # signers) and (t-k)
multiplications
– Bilinear mappings are expensive
– Computing a single mapping in Fp (for |p|=512) on a 1GHz PIII

takes 31 msecs!

26

51

Cost ComparisonsCost Comparisons

62
184.88
463.88
1570.8

8.52
1623.59
1655.86
16203.5

0.16
44.12
45.16
441.1

1 signature
t =1000 sigs, k=1 signer
t =100 sigs, k=10 signers

t =1000 sigs, k = 10 signers
Verify

3.543.826.821 signatureSign

BGLSBatch DSACondensed RSA

(P3-977MHz, Time in mSec)

Parameters:
For RSA: |n| = 1024
For DSA: |p| = 1024 and |q| = 160
For BGLS: Field Fp with |p| = 512

1. Querier computation:

52

Cost ComparisonsCost Comparisons

2. Bandwidth overhead:

512
512
512
512

1184
1184000
1184000

11840000

1024
1024

10240
10240

1 signature
t =1000 sigs, k=1 signer
t =100 sigs, k=10 signers

t =1000 sigs, k = 10 signers

BGLSBatch DSACondensed RSA

(unit: bits)

27

53

Merkle Hash Tree (MHT)Merkle Hash Tree (MHT)

• Authenticate a sequence of data values D0 , D1 , …, DN
• Construct binary tree over data values

T0

D0 D2 D3D1 D4 D6 D7D5

T1 T2

T3 T4 T5 T6

54

MHT contd.MHT contd.
• Verifier knows T0
• How can verifier authenticate leaf Di ?
• Solution: re-compute T0 using Di
• Example authenticate D2 , send: D3 ,T3 ,T2
• Verify T0 = H(H(T3 || H(D2 || D3)) || T2)

T0

D0 D2 D3D1 D4 D6 D7D5

T1 T2

T3 T4 T5 T6

28

55

MHT Example MHT Example ---- Certificate Revocation TreeCertificate Revocation Tree

h7=h(h5,h6)

h5=h(h1,h2) h6=h(h3,h4)

h1=h(h(cert1),h(cert2))

h2=h(h(cert3),h(cert4)) h4=h(h(cert7),h(cert8))

h3=h(h(cert5),h(cert6))

cert1 cert2 cert3 cert4 cert8cert7cert6cert5

Signed by CA

56

• Can use MHTs with leaves representing records
and the root signed by the owner
– Authentic 3rd party publishing
– Prior work by Martel, Stubblebine, Devanbu, et al.

• For Multi-owner scenario:
– Individual trees for each owner OR
– A single tree with a shared signing key among all

owners
– Mixed tree

29

57

MHT contd.MHT contd.

As a response to a posed
query, server

1. Selects records that match
query predicate

2. Sends records along with
hashes on co-paths for each
record.

3. Attach a single signature
corresponding to root of hash
tree

Upon receiving query reply,
querier

1. Computes hashes of all
records returned

2. Using hashes of nodes on
co-paths, computes hashes
for each path to the root

3. Verifies signature of root
node

58

MHT OverheadMHT Overhead
• For n leaf nodes and t records in the query reply

– Lower server-storage overhead compared to per-record
signatures

• At most: (2n-1)*|hash| + |sig| as opposed to n*|sig|

– Record insertion (owner computation overhead) requires 2
extra rounds of communication

• to make structural changes to the tree

– Querier computation cost lower since verification involves
computing hashes

• Compared with Combined RSA which involves mod mults…

– However, bandwidth overhead increases!
• Hashes for all nodes on co-paths must be supplied

30

59

Bandwidth overheadBandwidth overhead

• Expected overhead
– For n leaf nodes and t records in query reply
– Let n=2h and wlog, let P(a leaf node is selected) = t/n
– Expected # of additional hashes (non-leaf nodes)

returned is given by:
kk

n
t

n
th

k

kh
21

0

2

1112 ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−∑

−

=

−

e.g., if h=30, t=1024, and |hash| = 160 then,
Bandwidth overhead = 3,132,000 bits

(for combined RSA, 1024 bits)

60

In conclusionIn conclusion……
• No clear winners!

• MHTs: good for computation, bad for bw and dynamic databases
– Can be used to guarantee query completeness (for range queries)
– Needs a sorted MHT for each attribute

• Currently investigating hybrid model

• Is it possible to aggregate/condense DSA-like signatures?

• Is it possible to aggregate multi-signer RSA?

• Any new efficient and practical signature scheme that allows multi-
signer aggregation?

• How to prevent mutability in aggregated/condensed signatures?

31

61

Related WorkRelated Work

• Authentic 3rd party publishing
• Private information retrieval (PIR)
• Searching encrypted data for keywords

– Boneh, et al.
– Song, et al.

• Encrypted aggregation
– Privacy Homomorphisms (Rivest, et al.)

• Watermarking databases
– Attallah, et al.

• Privacy-preserving data mining
– Agrawal, et al.

• Batch signature verification (RSA, DSA, etc.)

62

Some referencesSome references
1. Hakan Hacigumus, Bala Iyer, Chen Li and Sharad Mehrotra

Executing SQL over Encrypted Data in the Database-Service-Provider Model
SIGMOD 2002

2. Hakan Hacigumus, Bala Iyer and Sharad Mehrotra
Providing Database as a Service
ICDE-2002

3. Maithili Narasimha, Einar Mykletun and Gene Tsudik
Efficient Data Integrity in Outsourced Databases
NDSS 2004

4. Bala Iyer, Sharad Mehrotra, Einar Mykletun, Gene Tsudik and Yonghua Wu
A Framework for Efficient Storage Security in RDBMS
EDBT 2004

5. Bijit Hore, Sharad Mehrotra and Gene Tsudik
A Privacy-Preserving Index for Range Queries
in submission

6. Maithili Narasimha, Einar Mykletun and Gene Tsudik
Signature Bouquets: Immutability for Aggregated Signatures
in submission

32

63

Thank you!Thank you!
Questions?

64

Query DecompositionQuery Decomposition

Client Query

Q: SELECT name, pname FROM EMPLOYEE, PROJECT
WHERE EMPLOYEE.pid=PROJECT.pid AND salary >
100k

Server Query
Encrypted

(EMP)

Encrypted
(PROJ)

σsalary >100k

πname,pname

D

D

e.pid = p.pid

EMPLOYEE

PROJECTσsalary >100k

πname,pname

e.pid = p.pid

33

65

Query Decomposition (2)Query Decomposition (2)

E_EMP

E_PROJ

σsalary >100k

D

D

E_EMP

E_PROJ

σsalary >100k

D

D

σs_id = 1 v s_id = 2

e.pid = p.pid

e.pid = p.pid

πname,pname

πname,pname

Client Query

Server Query

Client Query

Server Query

66

Query Decomposition (3)Query Decomposition (3)

e.p_id = p.p_id

E_EMP

E_PROJ

σsalary >100k ∧ e.pid = p.pid

D

σs_id = 1 v s_id = 2

e.pid = p.pid

E_EMP

E_PROJ

σsalary >100k

D

D

σs_id = 1 v s_id = 2

πname,pname πname,pname

Client QueryClient Query

Server Query Server Query

34

67

Query Decomposition (4)Query Decomposition (4)

Q: SELECT name, pname
FROM EMPLOYEE, PROJECT

WHERE
EMPLOYEE.pid=PROJECT.pid

AND salary > 100k

QS: SELECT e_emp.etuple, e_proj.etuple
FROM e_emp, e_proj

WHERE
e.p_id=p.p_id AND
s_id = 1 OR s_id = 2

QC: SELECT name, pname
FROM temp

WHERE
emp.pid=proj.pid AND
salary > 100k

e.p_id = p.p_id

E_EMP

E_PROJ

σsalary >100k ∧ e.pid = p.pid

D

σs_id = 1 v s_id = 2

πname,pname

Client Query

Server Query

