
IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000 1

New Multiparty Authentication Services and Key

Agreement Protocols
Giuseppe Ateniese, Michael Steiner, and Gene Tsudik, Member, IEEE

Abstract|Many modern computing environments involve
dynamic peer groups. Distributed simulation, multi-user
games, conferencing applications and replicated servers are
just a few examples. Given the openness of today's net-
works, communication among peers (group members) must
be secure and, at the same time, e�cient. This paper stud-
ies the problem of authenticated key agreement in dynamic
peer groups with the emphasis on e�cient and provably se-
cure key authentication, key con�rmation and integrity. It
begins by considering 2-party authenticated key agreement
and extends the results to Group Di�e-Hellman key agree-
ment. In the process, some new security properties (unique
to groups) are encountered and discussed.

Index Terms|Authentication, collaborative work, commu-
nication system security, decision Di�e-Hellman problem,
dynamic group setting, key establishment/agreement pro-
tocols.

I. Introduction

T
HIS paper is concerned with security services in the

context of dynamic peer groups (DPG's). Such groups

are common in many layers of the network protocol stack

and many application areas of modern computing. Exam-

ples of DPG's include replicated servers (such as database,

web, time), audio and video conferencing and, more gener-

ally, collaborative applications of all kinds. In contrast to

large multicast groups, DPG's tend to be relatively small

in size, on the order of a hundred members. (Larger groups

are harder to control on a peer basis and are typically orga-

nized in a hierarchy of some sort.) DPG's typically assume

a many-to-many communication pattern rather than one-

to-many commonly found in larger, hierarchical groups.

The speci�c security requirements and needs of dynamic

peer groups { in particular, key management { are still con-

sidered as open research challenges [1]. Recently, several

Giuseppe Ateniese was with the USC Information Sciences Insti-
tute. He is now with the IBM Zurich Research Laboratory, 8803
R�uschlikon, Switzerland (e-mail: gat@zurich.ibm.com).

Michael Steiner was with the IBM Zurich Research Laboratory,
8803 R�uschlikon, Switzerland. He is now with the Universit�at des
Saarlandes, 66123 Saarbr�ucken, Germany (e-mail: steiner@acm.org).

Gene Tsudik is with the Department of Information and Com-
puter Science, University of California, Irvine, CA 92697-3425, USA
(e-mail: gts@ics.uci.edu). Research supported by the Defense
Advanced Research Project Agency, Information Technology O�ce
(DARPA-ITO), under contract DABT63-97-C-0031.

Appeared in the IEEE Journal of Selected Areas in Communica-
tions, Vol 18, No. 4, April 2000.

Manuscript received February 7, 1999; revised August 30, 1999. A
preliminary version of this paper was presented at the 5th ACM Con-
ference on Computer and Communications Security, San Francisco,
CA, November, 1998.

c2000 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or pro-
motional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted compo-
nent of this work in other must be obtained from the IEEE.

key agreement protocols geared for DPG's were proposed

in [2]. They were obtained by extending the well-known

Di�e-Hellman key exchange method [3] to groups of n par-

ties. These protocols perform what we refer as initial key

agreement (IKA) within a group. Once a group is formed

and the initial key is agreed upon, group members may

leave (or be excluded) and new members may join. More-

over, entire groups may join and entire sub-groups may

need to be excluded. Any membership change must cause

a corresponding group key change in order to preserve key

independence.1 Since rerunning full IKA for each mem-

bership change is expensive, other supporting protocols

are necessary. The operations supported by these proto-

cols are collectively called auxiliary key agreement (AKA).

AKA protocols, also based on Di�e-Hellman extensions,

have been developed in [4]. Both IKA and AKA protocols

have been shown secure against passive adversaries. (The

security is based on the polynomial indistinguishability of

a Di�e-Hellman key from an arbitrary random value.)

This paper leverages the results of [2], [4] to develop prac-

tical and secure authenticated key agreement protocols for

DPG's. Also considered are other relevant security features

such as key con�rmation, key integrity and entity authen-

tication. In doing so, we discover that the meaning of these

and other familiar notions need to be rede�ned in a peer

group setting.

Our long-term goal is the development of a comprehen-

sive protocol suite and a toolkit for secure communica-

tion in DPG's. Although the focus is on relatively small

non-hierarchical peer groups, no speci�c communication

paradigm (e.g., RPC, connection-oriented) is favored, and

no assumptions are made about either the topology or tech-

nology of the underlying network.

The remainder of the paper is organized as follows. We

�rst discuss the general requirements and issues in authen-

ticated key agreement as well as previous work on this �eld.

After presenting some necessary terminology in Section IV

we proceed (in Section V) to develop a 2-party authenti-

cated key agreement protocol based on the Di�e-Hellman

method. We then extend the protocol to n parties (i.e., a

DPG) and demonstrate security of the result in Section VI-

A. Next, we consider complete group key authentication

(bilateral among all group members) in Section VI-B and

discuss key integrity and key con�rmation features. The

paper concludes with the discussion of other group secu-

rity services that are contingent upon authenticated key

agreement.

1Informally, this means that old keys cannot be known to new mem-
bers and new keys cannot be known to former members.

2 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

II. Key Establishment Protocols

Key establishment protocols can be roughly classi�ed in

two categories: key agreement protocols [4] and (central-

ized) key distribution protocols based on some form of a

trusted third party (TTP).

Although, in this paper we focus on contributory key

agreement, we briey note the following several features

of centralized key distribution that make it unsuitable for

DPG's:
� A TTP that generates and distributes keys for a mul-

titude of groups is a single point of failure and a likely

performance bottleneck.

� Since all group secrets are generated in one place, a TTP

presents a very attractive attack target for adversaries.

This is especially the case if a TTP serves as the key gen-

eration/distribution center for multiple groups.

� Environments with no hierarchy of trust are a poor

match for centralized key transport. (For example, con-

sider a peer group composed of members in di�erent, and

perhaps competing, organizations or countries.)

� Some DPG environments (such as ad hoc wireless net-

works) are highly dynamic and no group member can be

assumed to be present all the time. However, most key

distribution protocols assume �xed centers.

� It might be simply unacceptable for a single party to

generate the group key. For example, each party may need

assurance that the resulting group key is fresh and random

(e.g., in case the key is later used for computing digital

signatures).

� Achieving perfect forward secrecy (Def. IV.7 below) and

resistance to known-key attacks (Def. IV.8 below) in an

e�cient manner is very di�cult in the centralized key dis-

tribution setting.
Although we argue in favor of distributed, contributory

key agreement for DPG's, we also recognize the need for a

central point of control for group membership operations

such as adding and deleting members. This type of a role

(group membership controller) serves only to synchronize

the membership operations and prevent chaos. However,

the existence and assignment of this role is orthogonal to

key establishment and is largely a matter of policy.

III. Previous Work

We now present several prior results in multiparty key

agreement protocols. None of them provide any key au-

thentication services and all are resistant only against pas-

sive attacks. Moreover, it is unclear how to add authenti-

cation services to these schemes.

One mathematically elegant proposal was proposed by

Fiat et al. in [5]. A trusted center T selects a RSA-like

modulus n = pq and a secret element � 2 ZZ�
n
of large mul-

tiplicative order (such that it is hard to compute discrete

logarithms). For any 1 � i � t, each party Mi receives �
xi

mod n from T , with xi random and relatively prime with

xj for j 6= i. In order to establish a secret group key S, each

party Mi broadcasts xi and then, after collecting all mes-

sages, computes S = (�xi)x1���xi�1xi+1���xt (mod n) (i.e. a

Di�e-Hellman key with all the contributions). Drawbacks

of this protocol are that 1) it requires a trusted third party

(T) and, 2) as shown in [5], two or more parties can collude

and recover the secret �.

Another interesting scheme was presented in [6]. Given a

g 2 ZZ
�

p
with p prime, each party Mi computes and broad-

casts yi = g
xi (mod p), where xi is a randomly chosen

secret. After receiving all the contributions, M1 computes

the group key:

S = g
xtg

xt�1g
:::x3g

x2x1

:

Note that to come up with the same group key, the other

protocol parties needs to behave di�erently since the or-

der of exponentiation is right to left, i.e., the protocol is

asymmetric. In particular, for j = 3; : : : ; t � 1, Mj sends

vj = g
v
xj

j�1 to Mj+1 (where v2 = y1) and then computes

S. The party Mt simply waits vt�1 from Mt�1 and then

computes S = v
xt

t�1.

One notable recent result is due to Burmester and

Desmedt [7]. They construct a very e�cient protocol (BD)

which executes in only three rounds:

1. Each Mi generates its random exponent xi and broad-

casts zi = �
xi .

2. Each Mi computes and broadcasts Wi = (zi+1=zi�1)
xi

3. Each Mi can now compute the key S = z
txi

i�1 � W
t�1
i

�

W
t�2
i+1 � � �Wi�2 mod p

The resulting key is S = �
x1x2+x2x3+���+xtx1 . The protocol

is proven secure provided the DH problem is intractable.

However, there are some important assumptions underly-

ing this protocol. Speci�cally, it requires eachMi to broad-

cast to the rest of the group and to receive t� 1 messages

in a single round. Moreover, the system has to handle t

simultaneous broadcasts (in one round).

As mentioned in Section I, Steiner et al. [4] introduced

a class of protocols, called generic Group Di�e-Hellman

(GDH) key agreement. This entire class has been proven

resistant against passive attacks. In brief, [4] shows that if

a 2-party DH key is indistinguishable from a random value

then a t-party DH key is also indistinguishable from a ran-

dom value. Later in this paper, we describe in more detail

some of the GDH protocols and extend them to provide

authentication services.

IV. Goals, Definitions and Notation

In addition to key independence alluded to above and

resistance to all types of passive attacks, desired properties

for a practical key agreement protocol typically include the

following:

� Key Authentication

� Perfect Forward Secrecy (PFS)

� Resistance to Known-Key Attacks

� Key Con�rmation and Key Integrity

All of these are necessary to achieve resistance to active at-

tacks mounted by an increasingly powerful adversary. And,

as always, ironclad security must be achievable with the

lowest possible cost.

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 3

We now present some de�nitions for the above and other

terminology used in this paper. (Some of these are adapted

from Menezes et al. [8])

De�nition IV.1: A key agreement protocol is a key

establishment technique whereby a shared secret key is de-

rived by two or more speci�ed parties as a function of in-

formation contributed by, or associated with, each of these,

such that no party can predetermine the resulting value.

De�nition IV.2: A key agreement protocol is contribu-
tory if each party equally contributes to the key and guar-

antees its freshness.

For example, according to this de�nition, the basic two-

party Di�e-Hellman protocol is contributory. On the other

hand, the ElGamal one-pass [8] protocol is not contributory

as only one of the parties contributes a fresh exponent.

De�nition IV.3: LetR be an n-party key agreement pro-

tocol, M be the set of protocol parties and let Sn be a se-

cret key jointly generated as a result of R. We say that R

provides implicit key authentication if each Mi 2 M

is assured that no party Mq =2 M can learn the key Sn

(unless aided by a dishonest Mj 2M).

De�nition IV.4: A protocol provides key con�rmation
if a party is assured that its peer (or a group thereof) ac-

tually has possession of a particular secret key.

De�nition IV.5: A contributory key agreement protocol

provides key integrity if a party is assured that its par-

ticular secret key is a function of only the individual con-

tributions of all protocol parties. In particular, extraneous

contribution(s) to the group key cannot be tolerated even

if it does not a�ord the attacker(s) with any additional

knowledge.

De�nition IV.6: An authenticated group key agree-

ment protocol is a key agreement protocol which provides

implicit key authentication.

De�nition IV.7: A protocol o�ers perfect forward se-
crecy (PFS) if compromise of a long-term key(s) cannot

result in the compromise of past session keys.

De�nition IV.8: A protocol is said to be vulnerable to

known-key attack if compromise of session keys allows:

1) a passive adversary to compromise keys of other sessions,

or 2) an active adversary to impersonate one of the protocol

parties. (See [9] and [10] for details.)

The notation as used throughout the paper is shown in

Figure 1.

All arithmetic throughout the paper is performed in a

cyclic group G of prime order q which is a subgroup of ZZ�
p

for a prime p such that p = kq + 1 for some small k 2 N

(e.g. k = 2).

No practical methods are known to compute partial in-

formation with respect to discrete logarithms (DL) in sub-

group with this setting. Most DL-based schemes have been

designed using a prime order subgroup. One of the advan-

tages of working in such a group is that all the elements

(except the unity element) are generators of the subgroup

itself. Moreover, using subgroup of prime order seems to be

a prudent habit [11]; it also results in increased e�ciency.

When operating in subgroups it is important to take into

account the attacks outlined in [11], [12]. To prevent mas-

n number of protocol parties (group members)

i; j indices of group members

Mi i-th group member; i 2 [1; n]

p; q p; q prime, qj�(p)

G unique subgroup of ZZ�
p
of order q

� exponentiation base; generator in group G

xi long-term secret key of Mi

ri Mi's secret exponent 2RZZq
Sn group key shared among n members

Sn(Mi) Mi's view on a group key

Kij long-term secret shared by Mi and Mj

F () a function mapping elements from G to ZZq

Fig. 1. Notation

querading or leaking of (even partial) information of the

secret values, each party has to verify that the purport-

edly random values it receives are in fact elements of the

subgroup.2

Note that p, q and � are public and common to all users.

Since they need to be generated only once (or very seldom),

it is desirable to make the generation process unpredictable

yet veri�able to prevent the selection of weak or special

primes. One approach is to use the NIST method for se-

lecting DSA primes as described in the FIPS 186 document

[13].

In this context, the ability of an active adversary C to

modify or inject messages is quite \limited". In fact, any

message m can be written as m = �
c (mod p), where �

is a generator of the unique cyclic subgroup of ZZ�
p
having

order q and c some exponent (perhaps unknown). Later

on, we will suppose that the adversary C operates on this

type of elements.

V. Authenticated 2-party Key Agreement

In this section we develop an extension to the Di�e-

Hellman (DH) [3] key agreement method that provides key

authentication. We explicitly avoid requiring any cryp-

tographic tools (e.g., symmetric encryption or signatures)

other than those necessary for plain DH key agreement.

Before turning to the actual protocol, it is important to

emphasize that there exist secure protocols for authenti-

cated DH-based key agreement. However, some are not

contributory (such as El Gamal), some require more mes-

sages or assume a priori access to certi�ed long-term keys,

while others do not o�er PFS or are vulnerable to so-called

known-key attacks. (For example, some of the protocols

in the MTI protocol family [14].) An additional goal is to

come up with a protocol that is easily extendible from 2- to

n-party key agreement. Yet another, perhaps super�cial,

issue has to do with minimizing the security dependencies

of a protocol. For example, an authenticated DH-based key

2Verifying the order of an element x by checking, for example, that

x(p�1)=q (mod p) 6= 1, is rather expensive. If p and q are carefully
chosen such that the other prime factors of �(p)=2 are close to the
order of q, we can exclude elements of small order in an e�cient
manner by checking that x2 6= 1 (mod q). Although this seems to
be su�cient, the security of this method needs further study [12].

4 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

agreement can be easily constructed with the aid of conven-

tional encryption. The security of the underlying protocol

would then be dependent not only on the di�culty of, for

example, the Di�e-Hellman Decision (DDH) problem (as

far as key agreement) but also on the strength of the con-

ventional encryption (as far as key authentication). Ideally,

it should be possible to base all the security properties of a

given protocol on a single hard problem such as the DDH

problem in prime-order subgroups.

Protocol A-DH:
Let p, q, G be as de�ned above, and let � be a generator

of G.

Initialization:

Let x1 and x2 be two integers such that 1 � x1; x2 �

q � 1. Let M1 and M2 be two parties wishing to share

a key and let (x1; �
x1 (mod p)) and (x2; �

x2 (mod p))

be the secret and public keys of M1 and M2, re-

spectively. Thus, the public values of the system are

(p; q; �; �x1 ; �x2). The actual protocol is as follows:

Round 1:

1. M1 selects r1 2R ZZ
�

q
.

2. M1 �!M2 : �
r1 (mod p)

Round 2:

1. M2 selects r2 2R ZZ
�

q
, and computes K = F (�x1x2

(mod p)).

2. M2 �!M1 : �
r2K (mod p)

When M1 receives J = �
r2K (mod p), computes K�1

(mod q) and then J
r1K

�1

(mod p). The shared secret

key is S2 = �
r1r2 (mod p). Function F () maps elements

from G to ZZq . If p is a safe prime (p = 2q + 1) then

F
0(x) := if (x�q) then x else p�x � is a perfect bijec-

tive mapping to 1; : : : ; q; hence, F (x) := F
0(x) (mod q)

is suitable for our purposes.

Fig. 2. Authenticated Di�e-Hellman (A-DH)

One protocol that satis�es the above criteria is A-DH,

shown in Figure 2. It provides implicit key authentication

as stated by the following theorem.

Theorem V.1: The A-DH protocol is a contributory au-

thenticated key agreement protocol.

Proof: >From the construction of the resultant session key

S2 = �
r1r2 it is evident that A-DH is contributory. In our

model we assume that the two parties M1 and M2, wish-

ing to share a secret, behave correctly. Moreover, we as-

sume that any value computed as session key (S2), by each

party, is kept secret, i.e. it is infeasible for an attacker to

obtain any (even partial) information about S2. Let C be

an active adversary able to modify, delay, or inject mes-

sages. C's goal is to obtain the secret shared by M1 and

M2, if any. There are four possible attack scenarios which

we treat separately below. To prove our claim we use the

following approach: if the attacker C were able to use a

nondeterministic Turing machine TM to obtain informa-

tion about the secret key, then the same TM could be used

to solve an instance of the Di�e-Hellman Problem (DHP).

The notation TM(x1; : : : ; xn) = y means that, given input

x1; : : : ; xn, TM outputs y.

1. A-DH ends correctly (passive attack). Suppose there

exists a nondeterministic Turing machine TM1 by which

the attacker C is able to �nd the secret session key, i.e.

TM1(�
r1 ; �

r2K) = �
r1r2 . Since r1 and r2 are randomly

chosen, it is easy to see that TM1 could be used to solve

a generic instance of DHP. In fact, given �
a and �

b, with

unknown a; b, we would have TM1(�
a
; �

bK) = �
ab.

2. C substitutes �r1 with �
x. For simplicity's sake, we

can assume that the attacker C knows the value x. The

secret computed byM1 is �
r1r2 . The problem of computing

this value has been treated in the previous case.

The secret computed by M2 is �xr2 . The easiest way to

compute this value is extracting �
r2 from �

r2K . But this

is as hard as DH problem if K is the DH value of the

public-keys of M1 and M2.

3. C substitutes �
r2 with �

y. Suppose the attacker C

knows the value y. The secret computed by M2 is �r1r2 .

The hardness of computing this value has been already

treated in previous cases. C can compute the M1's secret,

�
yr1K

�1

, trying to get the value �
r1K

�1

. However, com-

puting �
r1K

�1

is as hard as DHP if K is the DH value of

the public-keys of M1 and M2.

4. C substitutes �
r1 , �

r2 with �
x and �

y, respec-

tively. Since the A-DH protocol's messages are each other

independent, this case is analogous to the cases 2 and 3.

qed

On top of implicit key authentication, a practical key agree-

ment protocol must: 1) provide perfect forward secrecy and

2) be resistant to known-key attacks. These two properties

are considered in the following theorems.

Theorem V.2: The A-DH protocol provides perfect for-

ward secrecy (PFS).

Proof: Suppose that the long-term key K = F (�x1x2

(mod p)) is compromised. Then, an adversary knows both

�
r1 (mod p) and �

(r2K)K�1

� �
r2 (mod p). Given these,

computing the session key S2 = �
r1r2 (mod p) is equiva-

lent to solving the DH problem in prime-order subgroups.

Theorem V.3: The A-DH protocol is resistant to known-

key attacks.

Proof: The scenario is the following: the attacker C is able

to modify both the A-DH protocol's messages and then get

the values computed by each party M1 and M2 as secret

key. From these values, C tries to compute information by

which he can impersonate one of the protocol parties. For

the sake of simplicity, we can assume that the target of the

attacker C is �nding �K by which he can impersonate M2.

There are four cases to consider:

1. C knows �
r1 , �

r2K and �
r1r2 (passive known-key

attack).

2. C substitutes �r1 with �
x, then knows �r1 , �r2K , �r1r2

and �
r2 .

3. C substitutes �r2 with �
y, then knows �r1 , �r2K , �r1r2

and �
r1K

�1

.

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 5

4. C substitutes both �
r1 , �r2 with �

x and �
y, respec-

tively. Then C knows �r1 , �r2K , �r2 and �
r1K

�1

.

Therefore, the general problem that C has to solve is:

given �a and �ab getting �b where a; b are unknown random

values3. It easy to see that, when working in subgroup of

prime order, this problem is equivalent to DH problem.

A nice feature of the A-DH protocol is that it does not re-

quire a priori knowledge of the long-term public keys of the

parties involved. In fact, certi�cates can be piggy-backed

onto existing protocol messages. This is a consequence of

the protocol's \asymmetry".

VI. Authenticated Group Key Agreement

In [2], a class of generic n-party DH protocols is de�ned.

The security of the entire protocol class is shown secure

against passive adversaries based on the intractability of

the Di�e-Hellman Decision (DDH) problem. Several con-

crete protocols were demonstrated that �t the requirements

of DPG's. Moreover, these protocols are shown to be opti-

mal with respect to certain measures of protocol complexity

[2], [15]. In this section we extend the GDH protocols to

provide implicit key authentication. In doing so, we make

use of the A-DH protocol discussed in Section V.

A. Authenticated GDH.2 protocol

Two practical protocols: GDH.2 and GDH.3 are de�ned

in [2]. (Another protocol, GDH.1, is used for demonstra-

tion purposes only.) The GDH.2 protocol is minimal in

terms of the total number of protocol messages. GDH.3, on

the other hand, aims to minimize computation costs. Al-

though, the discussion below focuses on extending GDH.2,

we note that all of the techniques we consider are easily

adapted to GDH.3.

We begin with a brief overview of GDH.2 in Figure 3.

This basic protocol can be easily amended to provide im-

plicit key authentication in an e�cient manner. This vari-

ation (A-GDH.2, shown in Figure 4) di�ers from the basic

protocol only in the last round, hence we are only concerned

therewith.

We assume thatMn shares (or is able to share) with each

Mi a distinct secret Kin.

For example, we can set Kin = F (�xi� xn (mod p)) with

i 2 [1; n � 1]. Where xi is a secret long term exponent

selected by every Mi (1 � xi � q � 1) and �
xi (mod p) is

the corresponding long-term public key of Mi.

In this protocol, each group member obtains an (implic-

itly) authenticated shared key with Mn. Moreover, if we

trust Mn to behave correctly, a group member can also be

sure the key shared with Mn is the same key Mn shares

with all other members.

Theorem VI.1: A-GDH.2 is a contributory authenti-

cated key agreement protocol.

3For example, if this problem were easy, the attacker C could get
�K from the values �r2 , �r2K .

Protocol GDH.2:
Let M = fM1; : : : ;Mng be a set of users wishing to

share a key Sn. The GDH.2 protocol executes in n

rounds. In the �rst stage (n � 1 rounds) contributions

are collected from individual group members and then,

in the second stage (n-th round) the group keying ma-

terial is broadcast. The actual protocol is as follows:

Initialization:
Let p be a prime and q a prime divisor of p� 1. Let G

be the unique cyclic subgroup of ZZ�
p
of order q, and let

� be a generator of G.

Round i (0 < i < n):

1. Mi selects ri 2R ZZ
�

q
.

2. Mi �!Mi+1: f�
r1���ri
rj jj 2 [1; i]g; �r1���ri

Round n:

1. Mn selects rn 2R ZZ
�

q
.

2. Mn �! ALL Mi: f�
r1���rn

ri ji 2 [1; n[g

Fig. 3. Group Di�e-Hellman (GDH.2)

Protocol A-GDH.2:

Rounds 1 to n� 1:

identical to GDH.2

Round n:

1. Mn selects rn 2R ZZ
�

q

2. Mn �! ALL Mi: f�
r1���rn

ri
�Kin

ji 2 [1; n[g.

Upon receipt of the above, every Mi computes:

�
(
r1���rn

ri
�Kin)�K

�1

in
�ri = �

r1���rn = Sn.

Fig. 4. Authenticated Group Di�e-Hellman (A-GDH.2)

Proof (sketch): From the construction of the resultant

session key Sn = �
r1��� rn it is evident that A-GDH.2 is

contributory.

Let C be an active adversary who can modify, delay, or

inject messages. C's goal is to share a key with either Mi,

for i 2 [1; n[, or with Mn by masquerading as some Mi.

In case of the former, all considerations of the proof in

Theorem V.1 apply.

Assume that C wants to masquerade as Mi. Let Sn(Mn)

be the key computed by Mn. It can be expressed as:

Sn(Mn) = �
cn� rn

where cn is a quantity possibly known to C, i.e., in round

n�1 C can replace �r1��� rn�1 with �cn in the message from

Mn�1 to Mn. C can also replace the other (n � 1) values

in the same message:

�

r1���rn�1
rj (j 2 [1; n[)! �

cj

for some known cj . This will cause Mn to output in the

last round:

f �
cj � rn� Kjn j j 2 [1; n[g

6 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

Now, since C knows all cj , she also knows (or can easily

compute) all c�1
j
. Hence, C can compute:

f �
rn� Kjn j j 2 [1; n[g

However, extracting information of Sn(Mn) is intractable if

the DDH problem in prime-order subgroup is hard.

Theorem VI.2: The A-GDH.2 protocol provides perfect

forward secrecy.

Proof: Suppose that all long-term keys fKin j i 2 [1; n[g

are compromised. Then, our adversary is able to compute

a subset of V = f��(S)j S � fr1; : : : ; rngg. But, as shown

in [2], given V , it is intractable to �nd information on the

group key Sn = �
r1;:::rn , if the DDH problem in prime-

order subgroup is hard.

A.1 Resistance to known-key attacks.

A-GDH.2 is resistant to passive known-key attacks since

the session keys do not contain any long-term information.

Resistance to active known-key attacks, on the other hand,

is somewhat dubious for reasons stated below.

Let Sn(Mi) be the session key computed by eachMi. For

0 < i < n � 1 we can re-write it as �ciriK
�1

in . For Mn,

Sn(Mn) = �
cnrn where ci is a quantity possibly known to

the adversary C. C also knows a subset of f��(S)j S �

fr1; : : : ; rngg. Using these to �nd �
Kin or �K

�1

in (for 1 �

i � n�1), is intractable if the DDH problem in prime-order

subgroup is hard.

Despite the above, some forms of active known-key at-

tacks are possible. Suppose, for example, that C tries to

impersonate M1. It starts by sending �
c1 to M1 in the last

protocol round (where c1 is selected by C). As a result,

M1 computes: Sn(M1) = �
c1r1K

�1
1n . Since this key is cor-

rupted (i.e., not shared with any otherMi), we can assume

that M1 will detect the problem and rerun the protocol.

Suppose further that C somehow manages to discover this

malformed key.4 In the next protocol run, C can substitute

the message from Mn�1 to Mn with:

�
c1r1K

�1
1n ; : : : ; �

c1r1

In other words, C substitutes only the �rst and the last

sub-keys in the ow; the rest of the values are unchanged.

This causes Mn to compute Sn(Mn) = (�c1r1)rn . Mn will

also compute (as a sub-key for M1):

(�c1r1K
�1
1n)rnK1n = �

c1r1rn

and will broadcast this value in the last protocol round.

The end-result is that C shares a key with Mn.

There are a few issues with this type of attack. First, it

relies on the lack of key con�rmation which we discuss later

in the paper. Second, it does not �t the usual de�nition

of a known-key attack since C is only able to share a key

with Mn, not with the rest of the group. (We note that

4This assumption is what makes active known-key attacks very un-
likely in practice.

known-key attacks were only de�ned in the context of 2-

party protocols. Their de�nition in a group setting remains

to be worked out.) Also, as noted in [10], a simple cure for

known-key attacks is by setting Sn = h(Sn(Mi)) where h()

is an appropriate collision-resistant hash function such as

SHA [16].

B. Complete (Strong) Group Key Authentication

The above protocol (A-GDH.2) achieves implicit key au-

thentication in a relatively weak form since the key is not

directly authenticated between an arbitrary Mi and Mj

(i 6= j). Instead, all key authentication is performed

through Mn. This may su�ce in some environments, e.g.,

when the exact membership of the group is not divulged

to the individual Mi's. Another reason may be that Mn

is an entity trusted by all other members, e.g., Mn is an

authentication server.

According to De�nition IV.3, A-GDH.2 will result in all

participants agreeing on the same key if we assume Mn

behaves correctly. However, no one { including Mn { can

be sure of other members' participation. In fact, one or

more of the intended group members may be \skipped"

without detection. Also, a dishonest Mn could partition

the group into two without detection by group members.

On the one hand, we assume a certain degree of trust in

all group members (including Mn), e.g., not to reveal the

group key to outsiders. On the other hand, one might want

to limit this trust when it comes to group membership, i.e.,

Mn might not be universally trusted to faithfully include

all (and only) group members.

In more concrete terms, our failure model is based on:

A malicious insider (group member) seeking to alter the

group membership by excluding some members { possibly

including itself { from participation in key agreement. For

example, this may translate into attempting to physically

circumvent certain group members or corrupting interme-

diate values that subsequently contribute to the excluded

members' keys.

On the other hand, our failure model speci�cally excludes:

A malicious insider revealing the group key or any other

group (or its own) secrets to outsiders.

An insider (malicious or otherwise) exhibiting any other

form of anomalous behavior.

In order to clarify the above, we introduce the following

feature:

De�nition VI.3: LetR be an n-party key agreement pro-

tocol and M be a set of protocol parties (DPG). We say

that R is a complete group key authentication proto-

col if, for every i; j (0 < i 6= j � n) Mi and Mj compute

the same key Si;j only if Si;j has been contributed to by

everyMp 2M. (Assuming thatMi andMj have the same

view of the group membership.)

An alternative de�nition for complete group key authen-

tication is as authenticated group key agreement for all

(Mi;Mj) pairs (0 < i 6= j � n).

A-GDH.2 can be augmented to provide complete group

key authentication as shown in Figure 5. (To better il-

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 7

r1

r2r3r4

 GROUP
CONTROLLERS

α

α

1 2 3

4K14

r1
α

r2
α

r1r2
α

r1r2
α

r1r3
α

r2r3
α

r1r2r3
α

r1r3r4
α

K24 r1r2r4
α

K34

r1
α

1 2 3

4

K12 r1
α

K13 r1
α

K14 r1
α

K12 r2
α

K21 r1r2
α

K13K23 r1r2
α

K14K24

r1r2
α

K13K23

r1r3
α

K12K32

r2r3
α

K21K31

r1r2r3
α

K14K24K34

r2r3r4
α

K21K31K41 r1r3r4
α

K12K32K42 r1r2r4
α

K13K23K43

Fig. 6. An example/comparison of A-GDH and SA-GDH.2

lustrate SA-GDH.2 and its di�erences with respect to A-

GDH.2, a 4-party example is shown in Figure 6.)

The biggest change in the present protocol, SA-GDH.2,

is the requirement for a priori availability of all members'

long-term credentials. In e�ect, each Mi is required to

have two shared keys (one in each direction) with every

other Mj . For every distinct ordered pair < i; j > (0 <

i 6= j � n) let < Kij ;K
�1
ij

> denote the unidirectional

key shared by Mi and Mj and its inverse, respectively.

Although it may appear otherwise, individual key inverses

of the form K
�1
ij

do not need to be computed (see below).

Drawbacks: SA-GDH.2 is clearly more expensive than A-

GDH.2. First, it requires n� 1 exponentiations from every

Mi during stage 1 as opposed to i in A-GDH.2. Second,

if pairwise keys (Kij) are not pre-computed, as many as

(n�1) additional exponentiations must be performed. Note

that in the last round, only one exponentiation is done

since Mi can pre-compute the value: (K�1
i1 � � � K

�1
in

) � ri
immediately following the i-th round.

Advantages: unlike A-GDH.2, SA-GDH.2 allows each

member to be explicitly aware of the exact group mem-

bership. This may be desired in some environments. Also,

the protocol is computationally symmetric, i.e., each mem-

ber performs the same sequence of computational steps and

the same number of exponentiations.

Theorem VI.6: SA-GDH.2 o�ers complete group key au-

thentication.

Proof (sketch): Suppose Mi and Mj compute the

same key while following the protocol correctly. Let Kn =

Sn(Mi) = Sn(Mj) and, suppose also, that some Mp 2 M,

(p 6= i; j) has not contributed to this key. Let Vi; Vj denote

the values received by Mi and Mj , respectively, in the last

round of the protocol. Recall that:

Sn(Mi) = (Vi)
(K�1

1i
��� K

�1

ni
)�ri

and, similarly:

Sn(Mj) = (Vj)
(K�1

1j
��� K

�1

nj
)�rj =

Since all other group members have contributed to the key,

we can re-write Vi as (Vj is similar):

Vi = �

(
r1���rn
rpri

)�(
K
�1

1i
��� K

�1

ni

K
�1

pi

)

Then,

Sn(Mi) = �
(
r1���rn

rp
)� K�1

pi

which must equal:

Sn(Mj) = �
(
r1���rn

rp
)� K�1

pj

However, this is impossible sinceK�1
pi

andK�1
pj

are distinct

and secret values.

Remark VI.7: An interesting feature of SA-GDH.2 is its

resistance to known-key attacks. Although we do not treat

this topic in detail, it can be easily observed that an at-

tack of the sort described in Section VI-A cannot succeed

against SA-GDH.2.

C. E�ciency Summary

We now consider the costs incurred by the protocols de-

scribed above. The two Tables I and II summarize, re-

spectively, the communication and computation overhead

of the following:

8 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

Protocol SA-GDH.2:

Round i (0 < i < n):

1. Mi receives a set of n intermediate values: fVkj1 �

k � ng. (M1 which can be thought of as receiving an

empty set in the �rst round):

Vk =

(
�
(
r1��� ri�1

rk
)�(Kk1��� Kk(i�1)) if k � (i� 1)

�
(r1��� ri�1)�(Kk1��� Kk(i�1)) if k > (i� 1)

2. Mi updates each Vk as follows:

Vk =

8<: (Vk)
Kik�ri = �

(
r1��� ri

rk
)�(Kk1��� Kki) if k < i

(Vk)
Kik�ri = �

(r1��� ri)�(Kk1��� Kki) if k > i

Vk if k = i

Remark VI.4: In the initial round M1 sets V1 = �
1.

Round n:
1. Mn broadcasts a set of all Vk values to the group.

2. On receipt, eachMi selects the appropriate Vi where:

Vi = �
(
r1��� rn

ri
)�(K1i��� Kni)

Mi proceeds to compute:

(Vi)
(K�1

1i
��� K

�1

ni
)�ri = �

r1��� rn

Remark VI.5: For the above, instead of computing

n � 1 individual key inverses of the form K
�1
ji

, each

Mi computes only a single compound inverse P
�1
i

=

(K�1
1i � � � K

�1
ni

) where Pi = (K1i � � � Kni)

Fig. 5. Group Di�e-Hellman with Complete Key Authentication
(SA-GDH.2)

� GDH.2 { plain group key agreement [2].

� A-GDH.2 - authenticated group key agreement as speci-

�ed in Section VI-A. Long-term keys Kin are assumed to

be pre-computed.

� A-GDH.2* - same as A-GDH.2 but long-term keys Kin

are computed as part of the protocol; this also implies that

public exponents of all group members must be accumu-

lated in the course of the protocol.

� SA-GDH.2 { complete group key authentication

The �rst table illustrates the communication, and the sec-

ond computation, costs. The latter is broken down into ex-

ponentiation, inverse computation and multiplication. Ex-

ponentiation is clearly the costliest operation as it requires

O(log3p) bit operations in ZZ�
p
. Given a and p, �nding the

inverse of a 2 ZZ
�

p
requires only O(log2p) bit operations

(using the extended Euclidean algorithm). Similarly, the

multiplication of a and b modulo p requires O(log2p) bit

operations. (See [17], [8] for a complete treatment of mod-

ular operations.)

The only somewhat surprising element of this analysis is

the relatively low additional cost of SA-GDH.2 as compared

to that of GDH.2 and A-GDH.2. Considering that it o�ers

complete group key authentication and several other useful

services (when coupled with key con�rmation; see below)

the added overhead is well justi�ed.

VII. New Services in Group Setting

As mentioned in the introduction, key con�rmation

(Def. IV.4 and [8]) is an important feature in key agree-

ment protocols. Its purpose is to convince one or more

parties that its peer (or a group of peers) is in possession

of the key. It can be argued that key con�rmation is not

absolutely necessary if communication immediately follows

key agreement, i.e., if a proper key is subsequently used

for bi-directional data ows, key con�rmation is achieved

as a side-e�ect. However, in general, it is desirable to bun-

dle key con�rmation with key agreement for the following

reasons:
1. it makes key agreement both a more robust and more

autonomous operation

2. doing otherwise can lead to an incorrectly computed key

not being detected later (since there may be a delay be-

tween key agreement and actual data communication)

On the other hand, it is not clear what key con�rmation

means in a peer group setting. Complete key con�rmation

(in the spirit of complete key authentication) would make

it necessary for all group members to compute the key and

then con�rm to all other members the knowledge of the

key. This would entail, at the very least, one round of n si-

multaneous broadcasts. We take a more practical approach

by concentrating on key con�rmation emanating from the

group controller, the �rst group member to compute the

actual key.

It turns out that the construction of A-GDH.2 (and SA-

GDH.2) makes key con�rmation fairly easy to add. The

only change to both protocols is the addition to the last

protocol message (the broadcast from Mn) of:

�
F (Sn(Mn))

where Sn(Mn) denotes the key as computed byMn and F ()

is as previously de�ned.

Upon receipt of the broadcast, eachMi computes its key

Sn(Mi) as before. Then, Mi veri�es the computed key:

�
F (Sn(Mi)) ?

= �
F (Sn(Mn))

In both A-GDH.2 and SA-GDH.2, key con�rmation cou-

pled with implicit key authentication, has a nice side-e�ect

of providing entity authentication of Mn to all other group

members. Informally, this is because the upow message

in round i can be viewed as a random challenge (ri being

Mi's nonce) submitted to Mn (indirectly, through all other

Mj ; j > i). The last broadcast, then, can be viewed as

Mn's reply to Mi's challenge encrypted under a secret key

shared among Mi and Mn. To support our claim that the

above results in entity authentication of Mn we need to

show that Mn's reply is fresh. (That Mn's reply is authen-

tic has been shown in Section VI-A.) Freshness, however,

is evident from the wayMi computes the key: by exponen-

tiating the value received from Mn with (ri � K
�1
in

).

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 9

TABLE I

Communication costs of protocols

GDH.2 A-GDH.2 A.GDH.2* SA-GDH.2

rounds n n n n

broadcasts 1 1 1 1

total msgs n n n n

total bandwidth (n2 + n)=2� 1 (n2 + n)=2� 1 n
2

n
2

msgs sent per Mi 1 1 1 1

msgs received per Mi 2 2 2 2

TABLE II

Computation costs of protocols

GDH.2 A-GDH.2 A.GDH.2* SA-GDH.2

exponentiations for Mi i+ 1 i+ 1 i+ 2 n

exponentiations for Mn n n 2n� 1 n

total exponentiations (n2 + 3n)=2� 1 (n2 + 3n)=2� 1 (n2 + 4n)=2� 2 n
2

inverses for Mi 1 1

inverses for Mn 1

total inverses n� 1 n

multiplications for Mi 1 1 2n� 2

multiplications for Mn n� 1 n� 1 2n� 2

total multiplications 2n� 2 2n� 2 2n2 � 2n

Remark VII.1: In SA-GDH.2, for each Mi, key con�r-

mation also results in entity authentication of all Mj , for

i < j � n.

Including key con�rmation in SA-GDH.2 leads us to an

interesting observation:

At the end of the protocol, each Mi knows that the key

it holds, Sn(Mi), has been contributed to by every group

member.

This follows directly from the complete group key authen-

tication property coupled with key con�rmation. Recall

that the former assures that, if any two distinct parties

(Mi and Mj) share a key, that key must be contributed to

by every group member. Adding key con�rmation allows

us to achieve a stronger goal: any group member can uni-

laterally establish that it is in possession of a correct key

which has been contributed to by every member. This is

both a novel and important feature of SA-GDH.2 and a

new security service unique to group key agreement.

De�nition VII.2: (informal) A group key agreement pro-

tocol o�ers group integrity if each protocol party is as-

sured of every other protocol party's participation in the

protocol.

Group integrity should not be confused with entity authen-

tication. It is a weaker notion since group integrity does

not guarantee freshness/timeliness. It only guarantees all

parties' participation in the protocol and, likewise, all par-

ties' awareness of the group membership.

De�nition VII.3: (informal) A group key agreement pro-

tocol is veri�able contributory if each protocol party is

assured of every other protocol party's contribution to the

group key.

Note that veri�able contributory implies group integrity

while the reverse is not true. For example, group integrity

can be obtained by requiring everyMi to sign and forward

(to all others) a statement certifying to its participation in

the protocol. Also, veri�able contributory property does

not imply that a group key is not contributed to by an out-

side party. As discussed in the Section VII-A, an adversary

can still inject some input into the group key.

A. The Elusive Key Integrity

Key integrity (Def. IV.5) is orthogonal to both key au-

thentication and key con�rmation. A key agreement pro-

tocol may o�er one or both of the latter while at the same

time not guaranteeing key integrity. Consider the (3-party)

SA-GDH.2 example shown in Figure 7.

This protocol o�ers complete group key authentication,

key con�rmation and, entity authentication of M3. At the

end, all parties wind up computing the same key. How-

ever, an adversary can exponentiate by a constant all val-

ues sent in round 1 (and/or round 2) and remain unde-

tected. Suppose the adversary simply squares all values in

round 2. Then, what M3 actually receives is: �r1� K12� 2;

�
r1� K13� r2� K23� 2; �

r2� K21� 2

As a result, M3 computes S3(3) = �
r1� r2� r3� 2 and both

M1 and M2 compute the same value, i.e., the quadratic

residue of the intended key. The key con�rmation check

does not help since the adversary introduces its input be-

fore Mn computes the group key.

We observe that, in SA-GDH.2, the adversary is only

able to introduce multiplicative (in the exponent) input,

i.e., it can cause the key to be KC for some value C. The

10 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

Round 1:
M1 selects r1 2R ZZ

�

q
.

M1 !M2 : �
r1� K12 ; �

r1� K13

Round 2:
M2 selects r2 2R ZZ

�

q
.

M2 !M3 : �
r1� K12 ; �

r1� K13� r2� K23 ; �
r2� K21

Round 3:
M3 selects r3 2R ZZ

�

q
, computes group key S3(3) and

broadcasts:

M3 !M1;M2 : �
r1� K12� K32� r3 ; �

r2� K21� K31� r3 ; �
F (S3(3))

M1 and M2 compute S3(1) and S3(2), respectively and

con�rm the correctness of their respective keys against

�
F (S3(3)).

Fig. 7. Example run of Protocol SA-GDH.2

construction of the protocol precludes the adversary from

introducing any other type of input, e.g., additive in the

exponent.

This leads us to pose the following question:

How important is key integrity in a veri�able contributory

key agreement protocol?

In practice, we expect that key integrity can be easily as-

sured via an external data integrity mechanism (e.g., SSL)

used hop-by-hop in the upow stage of the protocol. Conse-

quently, if every protocol message betweenMi andMi+1 in

the i-th (0 < i < n) protocol round is integrity-protected,

the adversary is no longer able to introduce any \noise"

into the group key. Note that the last, broadcast message

does not need to be protected; any modi�cation will be

detected by the key con�rmation check.

B. Dynamic Group Changes

Thus far, we treated groups as static entities. However,

more often than not, group changes during the lifetime of a

group. New members join in and old members leave (or get

evicted from) the group. Moreover, due to \environmental"

factors such as network failures groups can be partitioned.

Similarly, when network partitions heal, multiple groups

need to merge into one.

Therefore, the problem is how to share a secret key

(achieve key agreement) in the face of membership changes.

As stated in the introduction we require key independence

and therefore need to compute a new (authenticated and

contributory) key. Intuitively, we can approach the prob-

lem in two ways:

� Starting from scratch: all group members start the

key agreement protocol anew and destroy any and all old

values.

� Using previous information: in order to save compu-

tations, recycle old information to the extent possible (and

secure) to share a common secret.

It seems clear that the �rst approach is expensive, un-

scalable and utterly unsuitable for environments with fre-

quent membership changes.

In [4] we showed how the underlying non-authenticated

Group Di�e-Hellman key agreement protocols can be ex-

tended to achieve very e�cient and exible dynamic oper-

ation, i.e. adding/deleting a single member, fusion/�ssion

of sub-groups and re-keying.

Protocol GDH.2-MA:

LetMn+1 be the member to be added andMn the group

controller.

Round 1:

1. Mn selects brn 2R ZZ
�

q

2. Mn �!Mn+1: f�
brn r1���rn

ri ji 2 [1; n]g; �brnr1���rn
Round 2:

1. Mn+1 selects rn+1 2R ZZ
�

q
.

2. Mn+1 �!Mi: f�
brn r1���rn+1

ri ji 2 [1; n+ 1]g

Upon receipt of above, every Mi computes the new key

as usual and stores last ow for future AKA protocol

runs. Additionally, Mn replaces his key contribution rn

with brnrn.
Remark VII.4: Note that any group member can take

that role; the decision who is group controller is simply

a matter of policy.

Fig. 8. Member Addition Protocol for GDH.2

As an example you will �nd in Figure 8 the (unauthen-

ticated) member addition protocol. The trick in that pro-

tocol (as well as in all the other AKA protocols) is the

caching by the group members of the keying information

(i.e., partial keys) distributed in the broadcast phase of the

most recent IKA/AKA protocol run. This information is

incrementally updated for an AKA protocol run and re-

distributed to the new incarnation of the group.

Protocol A-GDH.2-MA:

Round 1:

1. Mn selects brn 2R ZZ
�

q
.

2. Mn �!Mn+1: f�
brn r1���rn

ri
�Kin

ji 2 [1; n]g; �brnr1���rn
Round 2:

1. Mn+1 selects rn+1 2R ZZ
�

q
.

2. Mn+1 �!Mi: f�
brn r1���rn+1

ri
�KinKin+1

ji 2 [1; n+1]g;

Upon receipt of above, every Mi computes the new

key as �
(brn r1���rn

ri
�KinKin+1)�K

�1

in
K
�1

in+1
�ri = �

brnr1���rn+1 =

Sn+1. and stores last ow for future AKA protocol runs.

Additionally, Mn replaces his key contribution rn withbrnrn.
Fig. 9. Member Addition Protocol for A-GDH.2

Figure 9 describes the authenticated version of the mem-

ber addition protocol. The �rst ow is exactly the same

as in the unauthenticated case except that we use now the

broadcast ow of the authenticated protocols which also

contain long-term keys Kin in the exponent. The Round 2

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 11

is essentially the same as the second round of the normal

A-GDH.2 protocol and guarantees implicit key authenti-

cation. As de�ned in Figure 9 each member would have

to remember the sequence of AKA protocols and the cor-

responding group controllers to be able to factor out the

long-term keysKjk . However, ifMi substitutes his key con-

tribution ri with ri �K
�1
in

after each broadcast ow, there

is no need to save this history-information and computing

the key is exactly the same operation as for IKA protocols.

The extension from unauthenticated to authenticated

AKA protocols can be performed in the same straight-

forward manner also for all other AKA protocol described

in [4] and will be omitted in the sequel.

C. Other Security Services

The primary motivation for obtaining a group key (in

any manner; whether centralized or contributory) is the

ability to communicate securely and e�ciently once

a key is established. If all DPG members share a key,

they can communicate using symmetric encryption. This

is more e�cient than schemes not requiring key establish-

ment.

For example, key establishment can be avoided as fol-

lows. A DPG member encrypts a message using a sym-

metric encryption function with a secret key K and then

sends the cipher-text to the entire group along with n� 1

versions of the key K; each encrypted using a public key

of a member. Although this simple scheme has no (cryp-

tographic) startup overhead, it is not contributory and be-

comes too expensive if the group is large or the volume

of message tra�c is high. Furthermore, it requires every

member to be aware of the exact group membership at all

times; something that can (if desired) be avoided with key

agreement.

We believe that there are other incentives to consider.

In particular, a shared group key can be used to provide a

number of useful services (in an e�cient manner):

� Authentication to outsiders

� Intra-group authentication

� Non-repudiation of group membership

� Private communication within group

� Private communication between outsiders and group

For example, we can use a secret group key (such as the

one agreed upon in A-GDH.2) to derive a corresponding

group Di�e-Hellman public key which can be subsequently

embedded in a group certi�cate. This would allow any

group member to use DSA [13] (or any El Gamal family)

signatures to authenticate itself (as a group member) to

both insiders and outsiders. The same group public key

can be viewed as long-term group Di�e-Hellman exponent

and outsiders (including other groups) can establish shared

keys with the entire group in a trivial manner. Similarly, a

group secret key can be used to derive an El Gamal public

key-pair; the public component thereof can be embedded

in a group certi�cate. Outsiders can then use this key with

El Gamal public key encryption to communicate in secret

with the entire group.

VIII. Group Key Agreement and Byzantine

Agreement

Group key agreement (GKA), in general, has similari-

ties to the well-known Byzantine Agreement (BA) problem

([18]) but there are a number of distinguishing features.

The fault model in GKA is not byzantine since we certain

degree of trust is assumed among the group members, e.g.,

not to reveal the group key.

The standard BA requirements are: agreement, validity

and termination. The validity requirement usually means:

if all honest participants have the same input then they will

agree on that value, otherwise they will agree on an an ar-

bitrary value. Although termination and agreement would

be required by complete authenticated key agreement too,

the validity requirement is quite di�erent, namely that the

agreement is private to the participants5 and that it is both

fresh and random. Therefore, we claim that BA alone is

not enough to build a robust GKA protocol.6

On the other hand, GKA has similarities with secure

multiparty computation (SMPC) [19], [20]. In fact, GKA

can be viewed as a special case of SMPC. However, we

note that general SMPC techniques typically yield highly

ine�cient protocols.

IX. Current Status

This paper presented new de�nitions and protocols

geared for the dynamic peer group (DPG) settings. In par-

ticular, it showed how important security services (key au-

thentication, key con�rmation and entity authentication)

can be incorporated into a particular class of group key

agreement protocols.

We are developing a prototype implementation of the

protocols described above. This includes both GDH.2-

based and GDH.3-based protocols. (GDH.3 is a key agree-

ment model aimed at minimizing computations by group

members [2]; protocols presented above are easily grafted

onto GDH.3.) One of our central goals is to develop a

general-purpose toolkit for key agreement and related se-

curity services in DPG's. Initial clients for the toolkit may

include voice conferencing over IP, replicated Web servers

and collaborative (multi-user) simulations. As �rst tier

of this process, we have developed a group key manage-

ment API called CLQ API [21]. CLQ API implements

the functions necessary to compute a group key in a dis-

tributed fashion. As it performs no communication on its

own, CLQ API requires a group communication layer in

order to provide reliable and sequenced message delivery.

This approach allows for a small, concise and generic API

(it is composed of only seven function calls). Moreover,

the purely communication-related issued (such as network

5Note that BA protocols in general do not care about con�dential-
ity.
6Despite the above, BA could be used for key con�rmation (Section

7) but that would represent overkill: BA protocols in the best-possible
settings (signatures) require at least (t + 1) rounds to tolerate t fail-
ures. If we set t = 0 (since we do not worry about byzantine faults) we
still need a parallel broadcast of n signatures which is rather costly.
Moreover, the bene�ts of BA over the simple key con�rmation method
sketched in Section 7 are unclear.

12 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

partitions and other abnormalities) are taken care by the

communication layer.

Finally, we are integrating CLQ API with a reliable

group communication layer: SPREAD [22]. Developed

at Johns Hopkins University, SPREAD supports process

group communication. It essentially provided a multicast

communication layer that facilitates the development of

fault-tolerant distributed applications in both LANs and

WANs. Groups are conveniently identi�ed by a name (

ASCII string) selected by the user, such that messages are

addressed to the entire group by specifying the group name.

Using the group abstraction, the communication subsystem

relieves the user from identifying the targets of messages

explicitly, and from �nding the network routes to them.

In addition, it guarantees all-or-none delivery semantics,

and handles message losses and transient network failures

transparently.

In summary, the work is an initial attempt to analyze

the requirements and issues in authenticated, contributory

key agreement for DPG's. It is quite likely that the pro-

tocols presented here can be improved. We anticipate that

practical experience with real DPG applications (e.g., our

integration e�orts with the SPREAD system) will result in

better understanding of group security needs and services.

X. Acknowledgements

The authors gratefully acknowledge the comments of M.

Waidner and M. Reiter.

References

[1] Jean E. Smith and Fred W. Weingarten, Eds., Research Chal-
lenges for the Next Generation Internet. Computing Research
Association, May 1997, Report from the Workshop on Research
Directions for the Next Generation Internet.

[2] Michael Steiner, Gene Tsudik, and Michael Waidner, \Di�e-
hellman key distribution extended to groups," in Third ACM
Conference on Computer and Communications Security. Mar.
1996, pp. 31{37, ACM Press.

[3] Whit�eld Di�e and Martin Hellman, \New directions in cryp-
tography," IEEE Transactions on Information Theory, vol. IT-
22, no. 6, pp. 644{654, Nov. 1976.

[4] Michael Steiner, Gene Tsudik, and Michael Waidner,
\CLIQUES: A new approach to group key agreement," in Pro-
ceedings of the 18th International Conference on Distributed
Computing Systems (ICDCS'98), Amsterdam, May 1998, pp.
380{387, IEEE Computer Society Press.

[5] Amos Fiat and Moni Naor, \Broadcast encryption," in Advances
in Cryptology { CRYPTO '93, Douglas R. Stinson, Ed. 1993,
vol. 773 of Lecture Notes in Computer Science, pp. 480{491,
Springer-Verlag, Berlin Germany.

[6] D. Steer, L. Strawczynski, W. Di�e, and M. Wiener, \A se-
cure audio teleconference system," in Advances in Cryptology
{ CRYPTO '88, S. Goldwasser, Ed., Santa Barbara, CA, USA,
Aug. 1990, number 403 in Lecture Notes in Computer Science,
pp. 520{528, Springer-Verlag, Berlin Germany.

[7] Mike Burmester and Yvo Desmedt, \A secure and e�cient con-
ference key distribution system," in Advances in Cryptology {
EUROCRYPT '94, I.B. Damgard, Ed. 1994, Lecture Notes in
Computer Science, Springer-Verlag, Berlin Germany, �nal ver-
sion of proceedings.

[8] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone,
Handbook of applied cryptography, CRC Press series on discrete
mathematics and its applications. CRC Press, 1997, ISBN 0-
8493-8523-7.

[9] Mike Burmester and Yvo Desmedt, \Towards practical 'proven
secure' authenticated key distribution," in 1st ACM Conference
on Computer and Communications Security, Victoria Ashby,
Ed., Fairfax, Virginia, Nov. 1993, ACM Press.

[10] Mike Burmester, \On the risk of opening distributed keys," in
Advances in Cryptology { CRYPTO '94. 1994, Lecture Notes
in Computer Science, pp. 308{317, Springer-Verlag, Berlin Ger-
many.

[11] Ross Anderson and Serge Vaudenay, \Minding your p's and
q's," in Advances in Cryptology: Proceeding of Asiacrypt'96.
1996, Springer-Verlag, Berlin Germany.

[12] Chae Hoon Lim and Pil Joong Lee, \A key recovery attack
on discrete log-based schemes using a prime order subgroup,"
in Advances in Cryptology { CRYPTO '97, Burton S. Kaliski
Jr., Ed. Aug. 1997, number 1294 in Lecture Notes in Computer
Science, pp. 249{263, Springer-Verlag, Berlin Germany.

[13] U. S. National Institute of Standards and Technology NIST,
\The digital signature standard (DSS)," Dec. 1998.

[14] T. Matsumoto, Y. Takashima, and H. Imai, \On seeking smart
public-key-distribution systems," The Transactions of the IECE
of Japan, vol. E69, pp. 99{106, 1986.

[15] Claus Becker and Uta Wille, \Communication complexity of
group key distribution," in 5th ACM Conference on Computer
and Communications Security, San Francisco, California, Nov.
1998, pp. 1{6, ACM Press.

[16] NIST National Institute of Standards and Technology (Com-
puter Systems Laboratory), \Secure hash standard," Federal
Information Processing Standards Publication FIPS PUB 180-
1, Apr. 1995.

[17] Neal Koblitz, A Course in Number Theory and Cryptography,
Number GTM 114 in Graduate Texts in Mathematics. Springer-
Verlag, Berlin Germany, Berlin, 1987.

[18] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann,
1996.

[19] Ran Canetti, Studies in Secure Multiparty Computation and
Applications, Ph.D. thesis, Department of Computer Science
and Applied Mathematics, The Weizmann Institute of Science,
Mar 1996, revised version.

[20] David Chaum, Claude Crepeau, and Ivan Damgard, \Multiparty
unconditional secure protocols," in Proceedings of the 20th Sym-
posium on Theory of Computing (STOC), New York, 1988, pp.
11{19, ACM.

[21] Giuseppe Ateniese, Damian Hasse, Olivier Chevassut, Yongdae
Kim, and Gene Tsudik, \The design of a group key agreement
api," Research report, IBM Research, 1999.

[22] Y. Amir and J. Stanton, \The spread wide area group commu-
nication system," Technical Report CNDS 98-4, The Center for
Networking and Distributed Systems, John Hopkins University,
1998.

Contents

I Introduction 1

II Key Establishment Protocols 2

III Previous Work 2

IV Goals, De�nitions and Notation 2

V Authenticated 2-party Key Agreement 3

VI Authenticated Group Key Agreement 5

VI-A Authenticated GDH.2 protocol 5

VI-B Complete (Strong) Group Key Authentication . . 6

VI-C E�ciency Summary 7

VII New Services in Group Setting 8

VII-A The Elusive Key Integrity 9

VII-B Dynamic Group Changes 10

VII-C Other Security Services 11

VIII Group Key Agreement and Byzantine Agreement 11

IX Current Status 11

X Acknowledgements 12

ATENIESE, STEINER AND TSUDIK: New Multiparty Authentication Services and Key Agreement Protocols 13

List of Figures

1 Notation . 3
2 Authenticated Di�e-Hellman (A-DH) 4
3 Group Di�e-Hellman (GDH.2) 5
4 Authenticated Group Di�e-Hellman (A-GDH.2) 5
6 An example/comparison of A-GDH and SA-GDH.2 . . . 7
5 Group Di�e-Hellman with Complete Key Authentica-

tion (SA-GDH.2) . 8
7 Example run of Protocol SA-GDH.2 10
8 Member Addition Protocol for GDH.2 10
9 Member Addition Protocol for A-GDH.2 10

List of Tables

I Communication costs of protocols 9
II Computation costs of protocols 9

Giuseppe Ateniese received his Ph.D in
Computer Science from the University of
Genoa (Italy) in February 2000.
From November 1997 to December 1998 he was
at the Information Sciences Institute (Univer-
sity of Southern California) working on applied
cryptography. From January 1999 to Septem-
ber 1999, he was at the IBM Zurich Research
Laboratory working on network security. He
joined the Department of Computer Science of
the Johns Hopkins University in October 1999

as an Assistant Professor.

Michael Steiner received a Diplom in com-
puter science from the Swiss Federal Institute
of Technology (ETH) in 1992 and is work-
ing towards the Ph.D. degree in computer
science from the Universit�at des Saarlandes,
Saarbr�ucken.
He is a research scientist at the Department
of Computer Science, Universit�at des Saarlan-
des, Saarbr�ucken and in the network security
research group at the IBM Zurich Research
Laboratory. His interests include secure and

reliable systems as well as cryptography.

Gene Tsudik (S'87 - M'91) received his
Ph.D. in computer science from the Univer-
sity of Southern California in 1991. Since
01/01/00, he is an associate professor in the
Department of Information and Computer Sci-
ence at University of California, Irvine. Be-
tween 1996 and 2000 he was a project leader
at USC/ISI and a research associate professor
in the Computer Science Department at USC.
His research interests include network security,
secure e-commerce, applied cryptography and

routing in wireless networks. Member FDIC.

