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Abstract

Many distributed applications require a reliable group communication system to provide co-

ordination among the application components. Such group communication is often conducted

over a wide-area network like the global Internet. Messages sent over the Internet often traverse

several independently controlled networks and are thus susceptible to attacks. Consequently,

distributed applications need mechanisms to secure this communication.

This paper describes a secure group communication protocol. The secure group layer (SGL)

bundles a reliable group communication system, a group authorization and access control mecha-

nism, and a group key agreement protocol to provide a comprehensive and practical secure group

communication platform. SGL also encapsulates the standard message security services (i.e, con-

�dentiality, authenticity and integrity). A number of challenging issues encountered in the design

of SGL are brought to light and experimental results obtained with a prototype implementation

of SGL are discussed.
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1 Introduction

Many current applications are implemented as distributed systems. Some are distributed by nature

(e.g., conferencing) while others are distributed to meet load-balancing and fault-tolerance require-

ments (e.g., content servers). Such applications often rely on reliable group communication to provide

coordination between processes communicating as a process group. A typical group communication

system provides reliable delivery of messages within the group, group membership maintenance and

reporting, as well as ordered delivery of messages. These properties allow the application to track

membership and send messages to the group with the assurance that all messages will be received

by all members in the same order. Example group communication systems which provide these

properties include Totem [18], Spread [4], and InterGroup [7].

One example of an application class that can bene�t from, and make extensive use of, a reliable

group communication platform is scienti�c collaboration software. Applications such as distributed

white boards, remote instrument control, messaging systems, electronic notebooks, and data sharing

are natural users of group communication. Applications of this type normally involve users spread

across a wide-area network and may utilize multiple process groups. Unfortunately, few group

communication systems can operate over a wide-area network and even fewer incorporate the access

control and other security services that these applications require.

Although acceptable solutions (e.g., SSL [10], IPSec [12]) are available for securing unicast con-

nections, they do not extend to securing group communication. One of the main reasons is key

management. Unicast communication involves only two parties and consensus on a shared key is

relatively easy to reach. Each time a new unicast connection is created the consensus process starts

from scratch and, if either party in a unicast communication session quits, fails, or for any reason

drops the connection, the other party also quits. In group communication, consensus on a shared

key is more complex since group membership is dynamic. Once a group is formed, members may

join or leave the group due to failures, network partitions and voluntary membership changes. This

greatly complicates the key management.

Controlling access to a group requires authentication of users and de�nition of group access

policy. Authentication and authorization for groups present a more complicated set of problems

than the typical client-server access control. Authentication is more di�cult because each group
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member must be able to authenticate all the other members. In a server-based access control model

the policy normally only controls access and is only enforced by the server. The scope of group

security policy is still a research topic as are the methods of group policy enforcement.

Another challenge in introducing group security services is how best to provide them to the

application. One approach is to integrate them into the underlying group communication system.

This approach makes the security services invisible to the applications but providing authenticity,

authorization and access control at the granularity of the users is di�cult. It would also not be

portable across di�erent group communication systems.

An alternate approach is to interpose a security layer between the application and the group

communication system. This approach introduces minor changes in the application to convey a

user's credentials (access privileges and user identity information) to the secure layer and has the

advantage of being largely independent of a speci�c group communication system implementation.

This approach also allows the security layer to leverage o� the properties of the group communication

system in transmitting its own messages to the group.

The main contribution of this paper is in the design of a secure group layer (SGL) aimed at WAN

environments. The secure group layer protects against attacks like eavesdropping and spoo�ng�

by integrating a reliable group communication system, a group authorization and access control

mechanism to determine who knows the key, and a group key agreement protocol which facilitates

the standard message security services (i.e. con�dentiality, authenticity and integrity). However,

denial of service attacks can still be a problem.

The remainder of this paper is organized as follow. Section 2 de�nes the group communication

terminology used in the rest of the paper. Section 3 summarizes the related work. Section 4

describes the secure group layer architecture and its security protocols. Finally section 5 presents

some experimental results obtained with a prototype implementation.

�Spoo�ng is an integral part of many network attacks. In a group communication setting, spoo�ng attacks refer to

the impersonation of a group member.
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2 Group Communication

Group communication systems are designed to support communication between processes cooperat-

ing in groups. The group communication system provides an underlying layer that does the work of

maintaining membership of the process group and reliably delivering messages sent to the process

group in an asynchronous distributed system.

There are several message ordering properties that group communication systems provide to

the application. A very basic property is causal ordering of messages. Messages sent by the same

application process are received by the application in the order they were sent and messages received

by an application process before sending a new message (m1) are ordered before m1 at all the

members of the group. Many systems also provide a total order on messages within the group so

that messages are received by the application in a single linear total order that is the same at all

the members of the group. This total order of messages allows the application to operate on the

messages serially as they are received since all the group members are receiving the same stream of

messages.

Group membership maintenance is a critical component of the group communication system

since the membership of the group is the basis for the determination of reliable delivery of messages

and message order. A particular instance of the group membership is referred to as a view. Each

application receives messages within the context of a view. It is important that the delivery order

of messages and view changes are consistent across the members of a particular view.

There are several consistency de�nitions that are in use by group communication systems. Some

common consistency de�nitions are sending view delivery, view synchrony, and extended virtual

synchrony (see [29]). Sending view delivery means that messages are received in the view in which

they were sent. Virtual synchrony de�nes messages order, message delivery and view change [8].

Extended virtual synchrony [19] places system wide consistency constraints on message and view

change reception properties and message order.
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3 Related Work

In the research literature, three di�erent aspects of secure group communication have been consid-

ered. One aspect is to secure the group communication system against Byzantine failuresy [13, 15, 21].

In this category are Rampart [21], Immune [13] for LAN environments and, their extension to WAN

environments done by D. Malkhi et al. [15]. The second aspect is to protect the messages generated

by the application. Here the threat model assumes that the group communication servers will not

be corrupted; hence, the focus is on attacks such as eavesdropping and spoo�ng. This approach is

exempli�ed by Ensemble [23] and Secure Spread [3]. The third aspect is to address the various group

policy issues such as requirements for group rekeying and levels of message security. An example is

the Antigone framework[16].

The Rampart system [21, 22] was the �rst to demonstrate the feasibility of reliable and atomic

group multicast in asynchronous distributed systems in the presence of Byzantine failures. It uses

public key cryptography to establish authenticated communication between a pair of processors

and implements the reliable and atomic group multicast protocols over a secure group membership

protocol [22].

The Immune system [13, 20] also uses public key cryptography to secure the Totem [18] daemon.

Immune secures the low-level ring protocol against Byzantine failure and hence maintains the reliable

ordered message delivery and group membership services despite the corruption of some group

communication servers by an attacker.

The Ensemble system [23] is descended from an earlier system named Horus, itself descended

from the Isis system. The early work on group communication security was performed in Horus and

then extended into Ensemble. Ensemble allows application-dependent trust models, and optimizes

certain aspects of group key distribution protocols. The group key generation and distribution

protocols used in Ensemble are extensions of symmetric (i.e. two-party) cryptographic tools such

as PGP [17] or Kerberos [24]. However, Ensemble relies on a trusted group leader to perform and

initiate key generation. The group leader is static and changes only in the event that the current

group leader leaves the group voluntarily or becomes unreachable. Consequently, the security is

yIn the Byzantine threat model the attacker can compromise the underlying group communication system and/or

run fake group communication system.
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based on the group leader's ability to generate good keys and its constant on-line availability.

Secure Spread [3] di�ers from Ensemble since it uses a fully distributed group key generation

protocol [26]. The Spread secure group layer is placed above the Spread group communication

system and relies on the property commonly known as view synchrony. However, we claim that view

synchrony is a stronger property than is required for the secure group layer (The property sending

view delivery is actually enough). Furthermore, we note that Secure Spread does not provide any

authentication or group access control mechanisms, does not consider the Byzantine failure model,

and focuses primarily on LAN and interconnected LAN environments.

The Antigone framework [16] provides interfaces for the de�nition and implementation of policies

for secure groups. Policies are implemented by composition and con�guration of mechanisms which

provide basic services for secure groups.

4 Secure Group Layer

The design of our secure group layer (SGL) needs the properties provided by the underlying group

communication system. These properties are a subset of those provided by extended virtual synchrony

and ensure that messages are consistently ordered and delivered across the group. The view change

events emanating from the group communication system notify SGL of membership changes due to

a join, leave, fail, partition, or merge event.

In addition to the existing properties of the group communication system, SGL provides appli-

cations with the property of sending view delivery. This property is useful for implementing group

security services since it guarantees the application that its group view when a message is sent is

the same view in which the message will be delivered. By using sending view delivery, SGL can use

one group key at a time and change keys with each new view.

The SGL architecture consists of four main components each implementing a separate protocol

(see Fig. 1). The record layer provides standard message security services (i.e., con�dentiality, in-

tegrity and authenticity). The access control protocol enforces restrictions on group membership.

The 
ush protocol provides a mechanism for delineating membership views where each view corre-

sponds to the lifetime of a speci�c secret group key and any keys derived from it. The 
ush protocol

allows group members to discard previously used keys and other associated data. The key agreement
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Figure 1: Protocol stack

protocol creates a shared group secret which is then used to derive a symmetric encryption key and

an authentication (MAC) key. These two keys are subsequently made available to the record layer.z

4.1 Record Layer

The record layer supports message transmission with con�dentiality, integrity and authenticity. It

takes an application message waiting to be sent, encrypts it using the symmetric group encryption

key, applies an integrity algorithm using the MAC group key and sends it using the group communi-

cation system. On receipt, a message is decrypted with the symmetric group decryption key, veri�ed

using the MAC group key and delivered to the application. The current SGL implementation uses

the Rijndael cipher [9] for encryption and the HMAC method [14] for MAC computation.

4.2 Flush Protocol

As mentioned above, the 
ush protocol implements sending view delivery for SGL and applications.

It de�nes the end of a membership view and thus guarantees that no further messages encrypted

with a particular session key will be received. Coordination is attained with special 
ush messages

shown in Figure 2.

The 
ush protocol is invoked by a view change event. Recall that sending view delivery means

that all messages that the application believes were sent in a given view must be received by the

zThe 
ush, access control, and key agreement protocols are invoked by each view change event.
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Identi�er: 
ush.id
Group: 
ush.G
View: 
ush.view
Sender's Certi�cate: 
ush.cert
Signature: 
ush.sign

Figure 2: Flush message structure.

application in that same view. Consequently, the 
ush protocol must send pending messages (which

have been accepted from the application) and block any new messages from the application before

it sends the 
ush message.

The protocol waits until a 
ush message from every process in the new view is received and

is veri�ed (see Section 4.3.2 for details). Receipt of a 
ush message represents for the recipient a

\promise" by the sender not to send any more messages encrypted with the group key corresponding

to the old view. When all 
ush messages are received, the process can conclude that no further

messages protected by the old group key will be received. Incidentally, the 
ush protocol treats a

process failure message as a 
ush message from the failed process. Other types of view change events

reset and restart the 
ush protocol.

It is important to note that, if SGL were to use an underlying group communication system

that provided sending view delivery, the 
ush layer would still be needed. Otherwise, the group

communication system would need to accept, for sending in the old view, application messages

bu�ered (e.g., during encryption) in SGL and not yet passed to the group communication system.

4.3 Access Control Protocol

A group access control mechanism enforces restrictions on group membership. Without it, other

security services (including key agreement and data integrity/privacy) are basically ine�ective. Our

access control approach uses membership certi�cates that authorize entry into the key agreement

protocol and, hence, the group itself.

Exploring all the variables involved in de�ning group policies is an interesting research topic, but

for the purpose of this paper we will assume that a simple policy exists. However, we still need to

identify the repository for group policies.
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4.3.1 Authorization Authority

The Authorization Authority is responsible for collecting group policies and using them to determine

who is allowed to join a group. The Akenti server is such an authority. Akenti determines if a user

is allowed to join a group and issues membership certi�cates containing that information.

A membership certi�cate (see Figure 3) associates a public key with the X.509 identity [30] of a

user, contains the access privilege granted to the user with respect to the group, the validity period

for the certi�cate as determined from the policy, the identi�cation of the Authorization Authority

that issued the certi�cate and additional information for the Authorization Authority's use, such as

a serial number.

Subject: Distinguished Name, Public Key
Access Privilege: Group, Authorized or Denied Access
Issuer: Distinguished Name, Signature
Administrative Information: Version, Serial Number.
Period of Validity: Start and Expire Dates/Times

Figure 3: Membership certi�cate structure.

The Akenti server not only issues membership certi�cates, it also manages them. It keeps a list of

all non-expired certi�cates that have been issued for a group and revokes them when the group policy

changes. Akenti also keeps a list of all the revoked certi�cates called the Certi�cate Revocation List

(CRL). When examining membership certi�cates for validity, therefore, it is necessary to contact the

issuing Akenti server to check the Certi�cate Revocation List. At this time this is not an automated

part of the group access control protocol.

4.3.2 Group Access Control Protocol

A user needs to �rst obtain a membership certi�cate from the Akenti server or needs to request a

new certi�cate if its certi�cate has expired or has been revoked - this is not currently an automated

part of the protocol.

When a user wants to join the secure group, he will start by joining the reliable group. This join

will cause a view change and intitate the 
ush protocol. During the 
ush protocol each member,

including the new joinee, will broadcast its membership certicate as part of the 
ush message. For
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e�ciency's sake, the membership certi�cate is included in the 
ush message. This does not increase

the size of the 
ush message since the membership certi�cate can replace the 
ush.cert �eld. Each

member will verify each other member certi�cate by checking that the message is signed by the

subject of the certi�cate, that the membership certi�cate is signed by Akenti, is within its validity

period and grants joining access.

Once the group controller has veri�ed all the members, it will start a new key agreement proto-

col. The group controller is a group member who enforces group access control policy by creating

and disseminating the group keying material to authorized members. The group controller role is

determined by the group key agreement as we will see in the next section. If any member sees key

agreement messages from a user that it does not trust, it can refuse to participate.

4.4 Key Agreement Protocol

In this section we brie
y sumarize the group key agreement protocol and then motivate its choice

as a key exchange protocol for SGL.

4.4.1 Group Key Agreement

A group key agreement mechanism establishes a secret key between members of a group. It allows

the members to agree upon and begin e�ciently computing a key without relying on any centralized

trusted third party (TTP) which could be a single point of vulnerability for the overall system.

An example of group key agreement is the Cliques [6, 26] protocol suite. The Cliques protocols

dynamically determine one of the members to serve as the group controllerx whose main task is to

coordinate the generation of partial keys and to disseminate them to other group members. Within

the Cliques protocol suite we focus on two protocols: IKA.1 (depicted in Fig 4) and IKA.2 (described

in [26] and in the appendix). These two Initial Key Agreement protocols can be extended to support

single-member join operations and also key agreement following a merge event (see [25]).

xGroup controller is always the newest (or most recent) group member. This selection criterion has an important

bene�t as it can be performed without any message exchange. Note that the concept of newest is not meaningful in an

execution model where di�erent processes observe group views in di�erents orders or with gaps. We postpone further

discussion of this issue until Section 4.4.3.
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IKA.1 is a member of the family of so-called Group Di�e Hellman (GDH) key agreement pro-

tocols which are shown secure against passive [26] and active [6] attacks. IKA.1 trades o� minimal

round (and number of messages) complexity in return for higher computational cost. In contrast,

IKA.2 a "sibling" GDH protocol minimizes computational cost at the expense of more protocol

rounds (and more messages). One contribution of the present work is the integration of the IKA.1

protocol with a group communication system, thus far IKA.1 has only been a theoretical interest.{

Protocol IKA.1:

Let M = fM1; : : : ;Mng be a set of members wishing to share a key GKn. IKA.1 executes in n rounds. In the
�rst stage (n � 1 rounds) contributions are collected from individual group members and, then, in the second
stage (n-th round), the group keying material is broadcast. Each member then uses its own contribution to
compute the group key. The actual protocol is as follows:
Initialization: Let p be a prime and q a prime divisor of p� 1. Let G be the unique cyclic subgroup of ZZ�

p of
order q, and let � be a generator of G.
Round i (0 < i < n):

1. Mi selects ri 2R ZZ
�
q .

2. Mi �!Mi+1: f�
r1���ri

rj jj 2 [1; i]g; �r1���ri

Round n:

1. Mn selects rn 2R ZZ
�
q .

2. Mn �! ALL Mi: f�
r1���rn

ri ji 2 [1; n[g

Figure 4: Cliques Group Di�e-Hellman Protocol (IKA.1)

4.4.2 Performance Analysis

As mentioned above, IKA.1 aims to minimize round complexity and the number of messages while

IKA.2 aims to minimize computational costs. The overall time-to-completion for each protocol is

dominated by two factors: network communications and cryptographic processing times; primarily,

exponentiation with large numbers which is quite costly. In order to compare the costs of the two

protocols we need to consider the steps of each protocol.

IKA.1 (Fig 4) operates in k rounds and requires k � 1 unicast messages followed by a single

broadcast. Each round i (1 � i < k) involves each member Mi performing i exponentiations. This

is followed byMi unicasting a set of (i+1) partial keys on to Mi+1, except for the last (k-th) round

when Mn+k broadcasts the partial keys. Finally, each Mi performs a single exponentiation upon

{For more details see the technical report [2].
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receipt of the broadcast. Assuming that all members exponentiate in approximately the same time,

the total protocol delay is thus COST (IKA:1). Similarly for IKA.2, the total protocol delay is

COST (IKA:2) (details in the appendix).

COST (IKA:1) =
E

2
k
2 + (En+

E

2
+D) k + D ; COST (IKA:2) = (2E+D) k +(En�E+3D)

where D is the network delay, E the cost of a single exponentiation, n the number of members in

the group and k the number of joining members.

We are now ready to compare the relationship between the cost of IKA.1 and the cost of IKA.2.

We assume a 2ms exponentiation delayk and a 100ms wide-area network delay �� and thus obtain

the relation represented in Figure 5. The curve represents the values for which IKA.1 and IKA.2

have the same cost.

4
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20

0 5 10 15 20 25 30 35 40 45 50

k (joines)

n (Group size)

IKA.1

IKA.2

Figure 5: Tradeo� between group size and number of joining members. In the area above the curve, IKA.2 is faster

than IKA.1.

In the typical underlying group communication system most view changes require consensus

among the new view's. For this reason, the time to complete a membership change becomes pro-

hibitive as the group size grows. This is particularly true when group members are spread across a

wide-area network (WAN) since a WAN involves an increased round-trip time between group mem-

bers and a greater likelihood of lost and thus resent messages due to the number of hops and sheer

kThe performance for the 512-bit moduli exponentiation was obtained using the big number library in OpenSSL

on a 450MHZ Pentium II PC.

��The average point-to-point delay for a US coast-to-coast round-trip at the application level.
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distances traversed.

We postulate that a practical limit for process group membership size in a wide-area network

is likely to be around 40. In our experience, current scienti�c collaborations typically involve even

smaller groups for example less than 20 members. Thus, most membership increases in a 20 member

group are likely to involve a relatively small number of members merging into an existing group

(either new members or heals of prior network partitions). Figure 5 clearly demonstrates that,

under these assumptions, IKA.1 o�ers better performance than IKA.2.

As shown in Figure 5, on one extreme all 20 members join the collaborative session as soon as

it starts. At n = 0 and k = 20, IKA.1 is as fast as IKA.2. Later, members may leave and join the

group or the group may become partitioned and such a partioned group may merge. Suppose a 5

member group and a 15 member group were to merge. As shown in Figure 5 at n = 5, k = 15 and

n=15, k = 5, IKA.1 is faster than IKA.2.

Figure 5 above is based on our current measurements for exponentiation and wide-area network

delay. The curve in �gure 5 will move up as the time for exponentiation goes down. In the future,

due to faster computers, the exponentiation delay is more likely to decrease than the wide-area

network delay. Moreover faster exponentiation algorithms exist; Hankerson et al. [11] obtained an

exponentiation delay of 1.5 msyy with a level of security equivalent to twice (i.e. 1024-bit security)

the 512-bit security that we require for scienti�c collaboration software.

4.4.3 Group Controller

In the event of a network failure, a group may become partitioned into several disjoint components.

These components may subsequently need to merge whenever the failure is repaired (i.e., a partition

heals). However, this brings up an important question of how to select the group controller following

a merge event.

In our framework, the new group controller is selected as the prior controller of the largest

merging sub-group (largest in terms of number of authorized members). Adding members from the

yyHankerson et al. [11] obtain a 1.5ms exponentiation delay on NIST-recommended elliptic curves K-163 using the

big number library in OpenSSL on a 400MHZ Pentium II PC.
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smaller group into the larger one has some obvious advantages. As an example, consider the merge

of a 5-member group and a 15-member group. Assuming all 20 members are previously authorized,

a 2ms single exponentiation delay and a 100ms WAN round-trip delay, merging 5 members into a

15-member group costs 0.780 sec, while merging 15 members into a 5-member group costs 1.900 sec.

More generally, COST (IKA:1) grows linearly with n and is quadratic in k, thus, merging a smaller

group into a larger one is always faster.

The problem now is how to agree on which group has the larger number of authorized members.

Since the underlying group communication system is acting independently of the secure group layer

(SGL) its membership may be a superset of the secure group membership. Consequently, relative

sizes of the merging secure groups cannot be determined from the information provided by the

underlying group communication system. Additionally, there may even be view changes where one

of the merging groups has no authorized members.

With a small modi�cation, our 
ush protocol can provide the information about sizes of merging

groups. Each member adds to the 
ush (
ush.view) a list of the processes in its secure group

communication session that are also in the new unsecure group view. Thus, on receipt of a 
ush

message from each member in the new view, all members can determine the largest secure group

and hence dynamically determine a member to serve as the merged group controller.

5 Experimental results

A prototype implementation of the Secure Group Layer in the "C" programming language has been

completed. It currently runs on Sun UltraSparc workstations with the Solaris 5.7 operating system.

The Totem system [1, 18] is utilized as the underlying group communication system, the Akenti

server [28] serves as the authorization server and the IKA.1 protocol has been implemented using

the functions provided by the Cliques toolkit [5]. We also use the implementation of DSA provided

by OpenSSL [27].

The Totem system [1, 18] provides all the properties required by the secure group layer and some

additional properties such as totally ordered messages. The Totem system runs as a daemon and a
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light-weight user interface layer. The remote users connect via the light-weight layer to the Totem

daemon using a TCP/IP connection - or through an SSL connection - across the high latency link

since the Totem daemons were not designed to operate over a high latency link. One advantage

of the Totem system is that it can be replaced, if needed, by its secure version called Immune [13]

which is designed to protect against Byzantine failures.

The Akenti server issues the membership certi�cates used for group admission. For the sake of

fault tolerance, it can be run as a set of mirrored servers. Note that Akenti can be administered

independently.. Akenti provides a Java interface to allow stakeholders to create digitally signed

policy certi�cates.

Initial performance tests with our prototype implementation were performed between sites in

Berkeley, California (LBNL) and Argonne, Illinois (ANL). In these tests we measured the perfor-

mance of the secure group layer (SGL) when one member joins the group (Fig 6), leaves the group

(Fig 8) and group merge operation with various component sizes (Fig 7). In each case the graphs

show the results from the worst case scenario (e.g. the joining member is separated from the group

by a high-latency link).

We now describe our experiments. At Lawrence Berkeley Laboratory (Berkeley), one Sun Ul-

traSparc 5s is running a Totem daemon and one group member. The second Sun UltraSparc 5s is

running a Totem daemon and the rest of the Berkeley group members. At Argonne, a Sun Ultra-

Sparc 2 is running one user who connects to a Totem daemon at Berkeley. On a Sun UltraSparc 5,

a 512-bit moduli exponentiation, DSA signature and DSA veri�cation zz provided by OpenSSL [27]

costs respectively 0.010 seconds, 0.010 seconds and 0.030 seconds.

Figure 6 shows the performance of SGL when the member in Argonne joins an existing group

in Berkeley. As an example, adding one member to a group of 19 members takes 1.4 seconds.

Examining the steps after the 
ush protocol is �nished, the group controller in Berkeley computes

19 exponentiations, signs the message and sends the values to the joining member in Argonne; 0.200

zzIt is worth to notice that DSA operations (i.e. signing and veri�cation) are more symmetric than the RSA

operations. RSA veri�cation is roughly an order of magnitude faster than RSA signing and RSA signing is roughly as

fast as DSA signing. For SGL, DSA is clearly a bottleneck.
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Figure 6: Performance of the Secure Group Layer when one member located at Argonne joins the group of size n�1.

seconds. Upon reception of the message, the joining member veri�es the signature, computes 19

exponentiations, signs the message, and sends the values to the daemon in Berkeley, 0.303 seconds.

At this point, the total is 0.503 seconds. When the daemon receives the message, it forwards it to

the users. The user in Argonne gets the message after 0.070 seconds, veri�es the signature, and

computes one exponentiation; 0.110 seconds. The user in Argonne computes the group secret in a

total time of 0.613 seconds. Adding the 
ush protocol we get 0.993 seconds. Each of the 18 users on

the Sun UltraSparc 5 have to get the message, verify the signature and compute one exponentiation;

0:035 + 18 � 0:04 = 0:755 seconds. Adding the cost of the 
ush protocol, the 1st member computes

the group key in 0.958 seconds while the 18th member computes the group key in 1.638 seconds.

The average experimental result obtained is 1.380 ms.
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t(sec)

(n,k) (Group size, Joiners)

Secure Layer

Figure 7: Performance of group merge with variable-size merging components. The main group size is constant at

15 members. The cost of the 
ush is not included.

Figure 7 shows the performance of the group merge operation with various partition sizes. As an

example a group with k=3 members is added to an existing group with n=12 members; i.e. (12,3).
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The 12 members in the existing group are on one computer and the other group has one member at

Argonne and the other two on a computer in Berkeley. Once the 
ush protocol completes, the group

controller of the larger group computes 12 exponentiations, signs the message and sends the value to

the 1st member in the group with 3 members; 0.13 seconds. The 1st member receives the message,

veri�es the signature, computes 13 exponentiations, signs the message and sends it to the member

located at Argonne; 0.17 seconds. The member located at Argonne receives the message, veri�es the

signature, computes 14 exponentiations, signs the message and sends it to the 3rd member; 0.215

seconds. The 3rd member receives the message, veri�es the signature, computes 14 exponentiations,

signs the message and sends it to the group; 0.215 seconds. At this point the total is 0.73 seconds.

The member located in Argonne, computes the group secret in a total time of 0.805 seconds. Each

of the �rst group's 12 members need to get the message, verify the signature and compute one

exponentiation; 0.48 seconds. So, the 1st member computes the group key in 0.77 seconds while the

12th member computes the group key in 1.21 seconds. The other two members of the second group

get the message, verify the signature and compute an exponentiation; 0.81 ms. The graph shows

the average experimental value obtained for this group merge operation.
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Figure 8: Performance of the Secure Group Layer when one member leaves the group and the group controller is

located at Argonne.

The emphasis in building this �rst prototype was on correctness rather than performance. A

signi�cant performance improvement would result from an extensive study, and implementation

of IKA.1 using elliptic curve cryptography [11]. Signi�cant improvements can also be realized by

exploiting faster platforms to speed-up the cryptographic operations such as exponentiation and

signature. Using the Totem system is an intermediaite solution. In the future, we expect to replace
17



Totem with the InterGroup protocols [7], currently under development. The InterGroup protocols

are intended for wide-area networks.

6 Conclusions

This paper presented the design of the secure group layer (SGL) aimed at WAN environments. SGL

o�ers protection against attacks like eavesdropping and spoo�ng. SGL determines who is allowed to

join the communication group by using membership certi�cates provided by an authorization server.

Moreover SGL does not rely on a centralized server (e.g., key distribution center) by integrating a

group key agreement protocol with a group communication system.

Since the group key agreement protocol is secure and the application messages are all encrypted,

group information is passed securely inside the group. Even the lack of reliable and ordered delivery

of messages will not disclose this information. However if the reliable group communication system

is compromised, the application can no longer count on the reliable delivery of messaages, which

may cause the communication to be useless. SGL could be used in conjunction with a group

communication system resistant to Byzantine failures [13, 15, 21] to reduce the chances of the

communication failing.

The result of this work is a prototype implementation of SGL using the Totem protocol. Im-

plemented atop the Totem system [1, 18], the prototype provides protection against attacks like

eavesdropping and spoo�ng. Additionally used in conjunction with the Immune system [13] SGL

can o�er protection against Byzantine failures.

Development of SGL presented several challenges. For example, access control introduced the

potential for the group communication system and SGL to have di�erent membership views. This,

in turn, led to the need to gather information about old memberships in SGL rather than in the

group communication system.

On-going work on SGL is investigating e�ciency improvements and robustness features. In addi-

tion, we are considering replacing the Totem system with its more recent follow-on, the InterGroup

[7] wide-area group communication protocol suite. This would allow for more e�cient support of
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groups spread across wide-area networks.
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Appendix

Protocol IKA.2:

As before, let M = fM1; : : : ;Mng be a set of members wishing to share a key GKn. IKA.2 executes in n + 2

rounds. In the �rst stage (n� 1 rounds) contributions are collected from each of the �rst n� 1 group members.

Then, in the n-th round, the accumulated keying material is broadcast by Mn. Next, each member factors out

its contribution and returns the result to Mn. In the last round, Mn contributes its own share to each partial

key received in the previous round and broadcasts the key-set to the group. The actual protocol is as follows:

Initialization:

Let p be a prime and q a prime divisor of p� 1. Let G be the unique cyclic subgroup of ZZ�
p of order q, and let

� be a generator of G.

Round n:

1. Mn �! ALL Mi: �r1���rn�1

2. Each Mi �! Mn: �
r1���rn�1

ri

3. Mn selects rn 2R ZZ
�
q .

4. Mn �! ALL Mi: f�
r1���rn

ri ji 2 [1; n[g

Figure 9: Cliques Group Di�e-Hellman Protocol (IKA.2)

The IKA.2 group key agreement protocol operates in k + 2 rounds and requires 2(n + k � 1)

unicast messages as well as two broadcasts. However, n+k�1 of these are actually contained within

a single round. The �rst (k�1) rounds are similar to those in IKA:1 (depicted in Fig 4) except that

each Mi only performs a single exponentiation. This is followed by Mn+k broadcasting the partial

keys. Then, each Mi performs one exponentiation (to factor out its share) and unicasts the result

back to Mn+k . Mn+k then performs n + k � 1 exponentiations to add its share and broadcasts the

resulting set. Finally, as in IKA.1, each Mi performs a single exponentiation and obtains a group

key. The total protocol delay can be expressed as:

COST (IKA:2) = (2E +D) k + (En� E + 3D)
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