Communication-efficient
Group Key Agreement

June 20, 2001

Gene Tsudik, UC Irvine
gts@ics.uci.edu

Joint work with:
- Adrian Perrig, CMU/UC Berkeley
- Yongdae Kim, USC/UC Irvine
Outline

- Definitions/concepts
- Related work
- Background/Motivation
- Protocols
Group Communication Settings

- **Few-to-Many**
 - Single-source broadcast: Cable/sat. TV
 - Multi-source: Televised debates, GPS
 - In general, Internet-style IP multicast

- **Any-to-Any**
 - Collaborative applications (peer groups)
 - Video/Audio conferencing, collaborative workspaces, interactive chat, network games, distributed database replication, etc.
 - Rich communication semantics, tighter control, more emphasis on synchronization, reliability and **security**
Dynamic Peer Groups (DPG)

- Relatively small (<100 members)
- No hierarchy
- Frequent membership changes
- Any member can be sender and receiver

Our focus: key management in DPGs
Key Management is a building block

- Secure Applications
- Authorization, Access control, Non-repudiation ...
- Encryption, Authentication
- Key Management
Group Key Management

- **Group key**: a secret quantity known only to **current** group members

- **Group Key Distribution**
 - One party generates a secret key and distributes to others.

- **Group Key Agreement**
 - Secret key is derived jointly by two or more parties.
 - Key is a function of information contributed by each member.
 - No party can pre-determine the result.
Key Distribution in DPG?

- Centralized key server
 - Single point of failure
 - Attractive attack target

- Can key server be sufficiently replicated?
 - Must be available in all possible partitions
 - Network can have arbitrary faults (e.g., ad hoc)
Need for Reliable Group Communication

- Group key agreement protocols rely on the underlying group communication systems.
 1. Protocol message transport
 2. Strong membership semantics (notification of a group membership)
 - Not for security reasons
- Group communication system needs specialized security mechanisms.

Mutual benefit and interdependency
Membership Operations

- Formation ???
- Group partition
- Member join
- Member leave
- Group merge
Motivation

- need group key agreement with:
 - Strong security
 - Support for dynamic membership
 - Robustness
 - Efficiency in
 - communication
 - and
 - computation
Common DPG setting
Computation overhead

- Most group key agreement methods involve modular exponentiation.

<table>
<thead>
<tr>
<th>1024-bit mod exp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium II 450</td>
<td>8 ms</td>
</tr>
<tr>
<td>Pentium III 800</td>
<td>4 ms</td>
</tr>
<tr>
<td>Sun Ultra 250</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

- Contrast with typical LAN roundtrip delay < 2ms
- On paper, communication overhead is negligible
- Number of protocol rounds?
Another DPG setting

wireless

dial-up
Motivation: minimize rounds and messages

- Over WAN (and wireless, dial-up, etc.) communication is more expensive than computation
- Communication has an upper bound (speed of light)
 - Computation speed increases much faster than communication
- Too many messages → some might be lost/corrupted
 - Retransmissions
- Many rounds → cascaded events (protocol interruption)

<table>
<thead>
<tr>
<th>Communication roundtrip (Ping)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UCI ↔ Columbia U</td>
<td>88 ms / 20(ls)</td>
</tr>
<tr>
<td>UCI ↔ Thailand</td>
<td>420 ms</td>
</tr>
<tr>
<td>UCI ↔ Mozambique</td>
<td>670 ms</td>
</tr>
</tbody>
</table>
Security Requirements

- **Group key secrecy**
 - Computationally infeasible for a passive adversary to discover any group key

- **Backward secrecy**
 - Any subset of group keys cannot be used to discover previous group keys.

- **Forward secrecy**
 - Any subset of group keys cannot be used to discover subsequent group keys.

- **Key Independence**
 - Any subset of group keys cannot be used to discover any other group keys.
 - Forward + Backward secrecy
Functional Requirements

- Minimize communication and round complexity
- Robustness against cascaded failures
- Maintain strong security, of course...
Related Work

- Focused mainly on security and/or computation overhead

- Diffie-Hellman extensions
 - Burmester and Desmedt (BD, 1993): fast comp-n, many broadcasts
 - Steiner et al. (Cliques, 1996): slow join, fast leave
 - Becker and Wille (BW 1998): \(\log n \) rounds, high computation overhead
 - Tzeng and Tzeng (1999, 2000): fast but not secure
Related Work (Cont.)

- TGDH (Tree-based Group Diffie-Hellman)
 - Y. Kim, A. Perrig and G. Tsudik
 - ACM CCS 2000

- STR (A Secure Audio Conference System)
 - D. Steer, L. Strawczynski, W. Diffie and M. Wiener
 - CRYPTO’88
 - Static groups
 - No security proof

What we do
- Extend STR to dynamic groups
- Security
- Analyze, implement, integrate
Diffie-Hellman

- **Setting**
 - p – large prime (e.g. 512 or 1024 bits)
 - $\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\}$
 - g – base generator

- $A \to B : N_A = g^{n_1} \mod p$
- $B \to A : N_B = g^{n_2} \mod p$
- $A : N_B^{n_1} = g^{n_1n_2} \mod p$
- $B : N_A^{n_2} = g^{n_1n_2} \mod p$

- **Diffie-Hellman Key** : $g^{n_1n_2}$
- **Blinded Key of n1** : $N_A = g^{n_1} \mod p$
Diffie-Hellman Problem

- **Computational Diffie-Hellman Assumption (CDH)**
 - Loose Definition: Given \(g^a, g^b\), computing \(g^{ab}\) is hard.
 - CDH is not sufficient to prove that Diffie-Hellman Key can be used as secret key.
 - Eve may recover part of information with some confidence
 - One cannot simply use bits of \(g^{ab}\) as a shared key

- **Decision Diffie-Hellman Assumption (DDH)**
 - Loose Definition
 - Given \(g^a\) and \(g^b\), and a guess \(g^c\), check if \(g^c = g^{ab}\)
 - Stronger than CDH
TGDH

- Simple: all membership operations in a single function
- Fault-tolerant: robust against cascaded faults
- Secure
 - Contributory
 - Provable security
 - Key independence
- Efficient
 - \(d\) is the height of key tree (\(O(\log_2 N)\)), \(N\) is the number of users
 - Maximum number of exponentiation = \(4(d-1)\)
Key Tree (General)
Security

- Group key secrecy T-DDH
 - Intuitive Definition
 Given all blinded keys of a random key tree, can we distinguish the group key from a random number?

- Proof goal
 If we can solve T-DDH, we can solve 2-party DDH.

- Key independence.
 - One member changing its contribution upon every event
Features

- **Efficiency**
 - Avg number of mod exp: $2 \log_2 n$
 - Max number of rounds: $\log_2 n$

- **Robustness** easy thanks to self-stabilization property

- Tree structure a bit complex

Goal:

- Group key agreement scheme with:
 - small number of rounds
 - small number of messages
 - in return for more computation
STR

- Communication efficient (not in original form)
 - Max 2 rounds
 - Max 2 broadcasts
- Simple: implemented as one function
- Fault-tolerant: Easier than TGDH
- Secure
 - Contributory
 - Provable security
 - Backward and forward secrecy => key independence
 - Provable security
- Computation cost is higher (for leave/partition)
 - Max # exponentiations $\sum_{i=1}^{N} (N-1) = 3N/2$
 - Low for join/merge
STR Key Tree
Join (Merge similar)
Leave or Partition
Features

- **Security**
 - Same as TGDH

- **Efficiency**
 - mod exp: 2 – join, 1.5n – leave
 - number of rounds: 1 – join, 1 – leave
 - number of messages: 2 – join, 1 – leave

- Robustness is provided by self-stabilization property
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Comm</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rounds</td>
<td>Msgs</td>
</tr>
<tr>
<td>Cliques</td>
<td>Join</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Leave, Partition</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Merge</td>
<td>k+3</td>
</tr>
<tr>
<td>TGDH</td>
<td>Join, Merge</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Leave</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Partition</td>
<td>log n/2</td>
</tr>
<tr>
<td>STR</td>
<td>Join</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Leave, Partition</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Merge</td>
<td>2</td>
</tr>
<tr>
<td>BD</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Finally…

Code available, part of Cliques distribution

- STR
- TGDH
- CKD
- BD
- GDH IKA.1
- GDH IKA.2

- http://sconce.ics.uci.edu
- Standalone or integrated with Spread group communication toolkit
- Questions?